Numerical Methods and Analysis for Interfacial Flow with Ionic Fluids and Surfactants

离子流体和表面活性剂界面流动的数值方法与分析

基本信息

  • 批准号:
    1909407
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

This project is an investigation of fundamental problems in the dynamics of fluids, complex fluids, and deformable matter that occur in applications to biology and microtechnology. Its focus is on the development of new mathematical models and efficient numerical methods to study the morphology and control of drops, cells, and vesicles by electric fields in electrolytic fluids and by flow fields with surfactant. Electrokinetic techniques are among the most common methods for manipulating soft particles and ionic fluids in micro-scale and biological applications and can induce, for example, shape changes in cells and vesicles, from which membrane properties can be inferred. They can also induce membrane channel and pore formation for advanced cell treatment and therapy. Surfactants are used to enhance or control a wide range of complex fluid flows that occur in industries ranging from oil extraction to agriculture, food, and pharmaceutical processing. They are also important in microfluidic applications. Impacts of the proposed research include the development of new mathematical models and numerical methods that will be of benefit to scientists and engineers studying electrokinetic and surfactant phenomena in biology and engineering. An additional impact of this project is the education and involvement of graduate students. The interdisciplinary training they receive will be valuable preparation for a range of careers in mathematics and science.During the deformation of a fluid-fluid interface with surfactant, surfactant exchange between the interface and bulk occur in a thin layer adjacent to the interface, and the layer's dynamics control interfacial surface tension and shape. During the interfacial flow of an ionic fluid that is driven by an electric field, a thin screening cloud of ions develops at the interface to form an electrochemical double layer or 'Debye layer'. The electric field induces motion in the ion cloud, the interface, and the surrounding fluid. The influence of surfactants on interface and flow dynamics and the occurrence of 'induced-charge electrokinetic flow' in an ionic fluid are both important phenomena in a wide range of applications. This project addresses a difficulty in the numerical computation of such flows in the practically important limit of thin surfactant exchange layers and thin electrical double layers, by developing fast and accurate 'hybrid' or multiscale numerical methods that incorporate an asymptotic analysis of the layer dynamics into a boundary integral or similar formulation of the interfacial free boundary problem. Central themes of the current project are the development of a hybrid method for electrokinetic flow about a deformable membrane and the investigation of fast and accurate numerical methods for studying the influence of surfactant and ionic surfactant on interfacial flow. The algorithm for electrokinetic flow will incorporate an analysis of the high-wavenumber or small-scale component of the elastic and electrostatic stresses on a membrane into a nonstiff method that is capable of handling the multiple time and space scales inherent in the problem. The method will be used to study canonical problems in the deformation of drops, vesicles, and cells, and to explore the interaction between membrane and ionic fluid properties. In the context of surfactant-laden flows, the hybrid numerical method will be developed to accurately handle multiply connected domains with close interaction of interfaces, such as occurs with multiple drops, and the presence of surfactant in the interior fluid, both of which are associated with substantial numerical challenges. This project also involves the development of fast or accelerated algorithms, including for drops in 3D flow with soluble surfactant, as well a fundamental analysis of the stability and convergence of the boundary integral methods that are a cornerstone of this work.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目是对生物学和微技术应用中发生的流体、复杂流体和可变形物质动力学中的基本问题的调查。其重点是发展新的数学模型和有效的数值方法,以研究电解液中电场和表面活性剂流场对液滴,细胞和囊泡的形态和控制。电动技术是在微尺度和生物应用中操纵软颗粒和离子流体的最常见方法之一,并且可以诱导例如细胞和囊泡的形状变化,从中可以推断膜特性。它们还可以诱导膜通道和孔形成,用于先进的细胞治疗和疗法。表面活性剂用于增强或控制从石油开采到农业、食品和制药加工等行业中出现的各种复杂流体流动。它们在微流体应用中也很重要。拟议研究的影响包括新的数学模型和数值方法的发展,这将有利于科学家和工程师研究生物学和工程中的电动力学和表面活性剂现象。该项目的另一个影响是研究生的教育和参与。他们接受的跨学科培训将为数学和科学领域的一系列职业生涯做好宝贵的准备。在含表面活性剂的流体-流体界面的变形过程中,界面和本体之间的表面活性剂交换发生在界面附近的薄层中,该薄层的动力学控制界面表面张力和形状。在由电场驱动的离子流体的界面流动期间,在界面处形成薄的离子屏蔽云以形成电化学双层或“德拜层”。电场诱导离子云、界面和周围流体中的运动。表面活性剂对界面和流动动力学的影响以及离子流体中“感应电荷电动流动”的发生都是广泛应用中的重要现象。该项目解决了在薄的表面活性剂交换层和薄的双电层的实际重要的限制,这种流动的数值计算的困难,通过开发快速,准确的“混合”或多尺度的数值方法,将渐近分析的层动力学的边界积分或类似的制定的界面自由边界问题。当前项目的中心主题是开发一种混合方法,用于可变形膜周围的电动流,并研究快速准确的数值方法,用于研究表面活性剂和离子表面活性剂对界面流的影响。动电流的算法将把对膜上弹性和静电应力的高波数或小尺度分量的分析纳入到能够处理问题中固有的多个时间和空间尺度的非刚性方法中。该方法将用于研究液滴,囊泡和细胞变形中的典型问题,并探索膜和离子流体性质之间的相互作用。在载表面活性剂的流动的背景下,混合数值方法将被开发,以准确地处理多个连接的域与密切的相互作用的接口,如发生与多个液滴,和表面活性剂的存在下,在内部流体中,这两者都与大量的数值挑战。该项目还涉及快速或加速算法的开发,包括可溶性表面活性剂的3D流中的液滴,以及边界积分方法的稳定性和收敛性的基本分析,这是这项工作的基石。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Jeffery’s paradox for the rotation of a single ‘stick–slip’ cylinder
单个“粘滑”圆柱体旋转的杰弗里悖论
  • DOI:
    10.1016/j.mechrescom.2023.104154
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Siegel, Michael;Yariv, Ehud
  • 通讯作者:
    Yariv, Ehud
A model for the electric field-driven flow and deformation of a drop or vesicle in strong electrolyte solutions
  • DOI:
    10.1017/jfm.2022.469
  • 发表时间:
    2022-06-20
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Ma, Manman;Booty, Michael R.;Siegel, Michael
  • 通讯作者:
    Siegel, Michael
Deformation and stability of a viscous electrolyte drop in a uniform electric field
均匀电场中粘性电解质滴的变形与稳定性
  • DOI:
    10.1103/physrevfluids.4.053702
  • 发表时间:
    2018-07
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Wang Qiming;Ma Manman;Siegel Michael
  • 通讯作者:
    Siegel Michael
Rotation of a superhydrophobic cylinder in a viscous liquid
超疏水圆柱体在粘性液体中的旋转
  • DOI:
    10.1017/jfm.2019.776
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Yariv, Ehud;Siegel, Michael
  • 通讯作者:
    Siegel, Michael
Convergence of the boundary integral method for interfacial Stokes flow
界面斯托克斯流边界积分法的收敛性
  • DOI:
    10.1090/mcom/3787
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Ambrose, David;Siegel, Michael;Zhang, Keyang
  • 通讯作者:
    Zhang, Keyang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Siegel其他文献

Motion of a disk embedded in a nearly inviscid Langmuir film. Part 1. Translation
嵌入几乎无粘性朗缪尔薄膜中的圆盘的运动。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    E. Yariv;Rodolfo Brandão;Michael Siegel;H. A. Stone
  • 通讯作者:
    H. A. Stone
Tu1662: COMPARISON OF QUALITY PERFORMANCE METRICS IN SCREENING AND SURVEILLANCE COLONOSCOPY: A SINGLE-CENTER EXPERIENCE
  • DOI:
    10.1016/s0016-5085(22)62444-2
  • 发表时间:
    2022-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    James S. Love;Meredith Yellen;Jeffrey Rebhun;Michael Siegel;Asim Shuja
  • 通讯作者:
    Asim Shuja
Highlights from the Field of Pediatric Dermatology Research from the 2023 PeDRA Annual Conference
2023 年小儿皮肤科研究领域亮点来自于小儿皮肤科研究协会年会
  • DOI:
    10.1016/j.jid.2024.09.014
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    5.700
  • 作者:
    Hannah R. Chang;Morgan Dykman;Leslie Castelo-Soccio;Colleen H. Cotton;Carrie C. Coughlin;Elena B. Hawryluk;Leslie Lawley;Lara Wine Lee;Kalyani Marathe;Dawn H. Siegel;JiaDe Yu;PeDRA Focused Study Group Leads;Michael Siegel;Esteban Fernández Faith;Lisa Arkin
  • 通讯作者:
    Lisa Arkin
Effective Partnering in Conducting Benefit-Risk Patient Preference Studies: Perspectives From a Patient Advocacy Organization, a Pharmaceutical Company, and Academic Stated-Preference Researchers
  • DOI:
    10.1177/2168479017746404
  • 发表时间:
    2018-12-30
  • 期刊:
  • 影响因子:
    1.900
  • 作者:
    Anne M. Wolka;Angelyn O. Fairchild;Shelby D. Reed;Greg Anglin;F. Reed Johnson;Michael Siegel;Rebecca Noel
  • 通讯作者:
    Rebecca Noel
Capturing the Dynamic Nature of Cyber Risk: Evidence from an Explorative Case Study
捕捉网络风险的动态本质:探索性案例研究的证据
  • DOI:
    10.24251/hicss.2023.738
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    29.3
  • 作者:
    S. Zeijlemaker;Michael Siegel
  • 通讯作者:
    Michael Siegel

Michael Siegel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Siegel', 18)}}的其他基金

Conference: Conference on Frontiers in Applied and Computational Mathematics (FACM 2023): New trends in computational wave propagation and imaging
会议:应用与计算数学前沿会议(FACM 2023):计算波传播和成像的新趋势
  • 批准号:
    2246813
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Conferences on Frontiers in Applied and Computational Mathematics: 2015-2017
应用与计算数学前沿会议:2015-2017
  • 批准号:
    1517152
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Numerical Methods and Analysis for Induced-Charge Electrokinetic Flow with Deformable Interfaces
可变形界面感应电荷动电流的数值方法与分析
  • 批准号:
    1412789
  • 财政年份:
    2014
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Conference on Frontiers in Applied and Computational Mathematics 2014, May 22 - 23, 2014
2014年应用与计算数学前沿会议,2014年5月22日至23日
  • 批准号:
    1444295
  • 财政年份:
    2014
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
EXTREEMS-QED: Research and training in computational and data-enabled science and engineering for undergraduates in the mathematical sciences at NJIT
EXTREEMS-QED:为 NJIT 数学科学本科生提供计算和数据支持的科学与工程方面的研究和培训
  • 批准号:
    1331010
  • 财政年份:
    2013
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Numerical methods and analysis for interfacial fluid flow with soluble surfactant
可溶性表面活性剂界面流体流动的数值方法与分析
  • 批准号:
    1009105
  • 财政年份:
    2010
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: Efficient surface-based numerical methods for 3D interfacial flow with surface tension
合作研究:基于表面的高效数值方法,用于具有表面张力的 3D 界面流动
  • 批准号:
    1016406
  • 财政年份:
    2010
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: Numerics and Analysis of Singularities for the Euler Equations
合作研究:欧拉方程的数值和奇异性分析
  • 批准号:
    0707263
  • 财政年份:
    2007
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Analysis and numerical computations of free boundaries in fluid dynamics: surfactant solubility and elastic fibers
流体动力学中自由边界的分析和数值计算:表面活性剂溶解度和弹性纤维
  • 批准号:
    0708977
  • 财政年份:
    2007
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularity Formation for the Three-Dimensional Euler Equations and Related Problems
FRG:协作研究:三维欧拉方程的奇异性形成及相关问题
  • 批准号:
    0354560
  • 财政年份:
    2004
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
  • 批准号:
    2343135
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
eMB: Collaborative Research: Mechanistic models for seasonal avian migration: Analysis, numerical methods, and data analytics
eMB:协作研究:季节性鸟类迁徙的机制模型:分析、数值方法和数据分析
  • 批准号:
    2325195
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Numerical Analysis for Meshfree and Particle Methods via Nonlocal Models
职业:通过非局部模型进行无网格和粒子方法的数值分析
  • 批准号:
    2240180
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
eMB: Collaborative Research: Mechanistic models for seasonal avian migration: Analysis, numerical methods, and data analytics
eMB:协作研究:季节性鸟类迁徙的机制模型:分析、数值方法和数据分析
  • 批准号:
    2325196
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Numerical Methods in Noncommutative Matrix Analysis
非交换矩阵分析中的数值方法
  • 批准号:
    2110398
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
  • 批准号:
    2107934
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
A novel development of optimization and deep learning methods based on the idea of structure-preserving numerical analysis
基于结构保持数值分析思想的优化和深度学习方法的新发展
  • 批准号:
    21H03452
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Mathematical Analysis and Numerical Methods for Peridynamics and Nonlocal Models
近场动力学和非局部模型的数学分析和数值方法
  • 批准号:
    2044945
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Establishing analysis methods for characterizing heat transport via numerical calculation
通过数值计算建立表征热传输的分析方法
  • 批准号:
    20K14659
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collisional Kinetic Transport: Analysis and Numerical Methods
碰撞动力学输运:分析和数值方法
  • 批准号:
    2009736
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了