Numerical methods and analysis for interfacial fluid flow with soluble surfactant
可溶性表面活性剂界面流体流动的数值方法与分析
基本信息
- 批准号:1009105
- 负责人:
- 金额:$ 33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-10-01 至 2014-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project investigates fundamental problems that are motivated by applications to surfactant-mediated flow. The theoretical approach has the potential to be adapted to a wider variety of practical situations that are similar from a mathematical point of view. Using this approach, the project investigators have recently begun the development of a fast and accurate hybrid numerical method to study the effects of solubility of surfactant on the two-phase flow of immiscible fluids in the practically important but theoretically challenging limit of large Peclet number or slow diffusion. Surfactants influence the dynamics of fluid mixtures by altering the surface tension at interfaces between immiscible fluids and are energetically favored to remain on an interface. However, in many examples the slow diffusional mobility of a surfactant that is soluble in the bulk flow near to but not on an interface can exert an important influence on the interface dynamics. The large bulk Peclet number limit of this investigation introduces a separation of spatial scales that presents a substantial challenge for traditional numerical methods. The conceptual underpinning of the approach taken here combines analytical, singular perturbation techniques in the small diffusion limit with fast and accurate numerical methods for two-phase interfacial flow. An important benefit of this approach is that highly accurate surface-based methods, such as the boundary integral or boundary element method, can be adapted to the study of surfactant solubility. Without the treatment that is under development by the investigators these methods do not apply.The project is expected to develop innovative theoretical models and numerical methods for the analysis and simulation of surfactant-mediated drop breakup and tip-streaming with soluble surfactant. It will develop new, fast, efficient and accurate numerical methods that are expected to be useful to scientists and engineers studying emulsion formation and stability as well as emerging microfluidic applications that range from chemical processing techniques to advanced medical applications. An additional and important impact of the project is the education and training of graduate students and postdoctoral fellows. The interdisciplinary training they receive on this project will be valuable preparation for a range of careers in mathematics and science.
该项目研究了表面活性剂介导流动应用所引发的基本问题。 该理论方法有可能适用于从数学角度来看类似的更广泛的实际情况。利用这种方法,项目研究人员最近开始开发一种快速、准确的混合数值方法,以研究表面活性剂的溶解度对不混溶流体两相流的影响,这种影响在实际重要但理论上具有挑战性的大佩克莱特数或缓慢扩散的极限中。 表面活性剂通过改变不混溶流体之间界面的表面张力来影响流体混合物的动力学,并且表面活性剂在能量上有利于保留在界面上。 然而,在许多例子中,可溶于界面附近但不在界面上的整体流中的表面活性剂的缓慢扩散迁移率可以对界面动力学产生重要影响。 这项研究的大块佩克莱特数限制引入了空间尺度的分离,这对传统数值方法提出了重大挑战。 这里采用的方法的概念基础将小扩散极限下的分析奇异扰动技术与两相界面流的快速准确的数值方法结合起来。这种方法的一个重要好处是,高精度的基于表面的方法,例如边界积分或边界元方法,可以适用于表面活性剂溶解度的研究。 如果没有研究人员正在开发的处理方法,这些方法就无法应用。该项目预计将开发创新的理论模型和数值方法,用于分析和模拟表面活性剂介导的液滴破碎和可溶性表面活性剂的尖端流。 它将开发新的、快速、高效和准确的数值方法,预计对研究乳液形成和稳定性以及从化学处理技术到先进医疗应用的新兴微流体应用的科学家和工程师有用。 该项目的另一个重要影响是研究生和博士后的教育和培训。 他们在这个项目中接受的跨学科培训将为数学和科学领域的一系列职业生涯做好宝贵的准备。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Siegel其他文献
Motion of a disk embedded in a nearly inviscid Langmuir film. Part 1. Translation
嵌入几乎无粘性朗缪尔薄膜中的圆盘的运动。
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:3.7
- 作者:
E. Yariv;Rodolfo Brandão;Michael Siegel;H. A. Stone - 通讯作者:
H. A. Stone
Highlights from the Field of Pediatric Dermatology Research from the 2023 PeDRA Annual Conference
2023 年小儿皮肤科研究领域亮点来自于小儿皮肤科研究协会年会
- DOI:
10.1016/j.jid.2024.09.014 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:5.700
- 作者:
Hannah R. Chang;Morgan Dykman;Leslie Castelo-Soccio;Colleen H. Cotton;Carrie C. Coughlin;Elena B. Hawryluk;Leslie Lawley;Lara Wine Lee;Kalyani Marathe;Dawn H. Siegel;JiaDe Yu;PeDRA Focused Study Group Leads;Michael Siegel;Esteban Fernández Faith;Lisa Arkin - 通讯作者:
Lisa Arkin
Tu1662: COMPARISON OF QUALITY PERFORMANCE METRICS IN SCREENING AND SURVEILLANCE COLONOSCOPY: A SINGLE-CENTER EXPERIENCE
- DOI:
10.1016/s0016-5085(22)62444-2 - 发表时间:
2022-05-01 - 期刊:
- 影响因子:
- 作者:
James S. Love;Meredith Yellen;Jeffrey Rebhun;Michael Siegel;Asim Shuja - 通讯作者:
Asim Shuja
Effective Partnering in Conducting Benefit-Risk Patient Preference Studies: Perspectives From a Patient Advocacy Organization, a Pharmaceutical Company, and Academic Stated-Preference Researchers
- DOI:
10.1177/2168479017746404 - 发表时间:
2018-12-30 - 期刊:
- 影响因子:1.900
- 作者:
Anne M. Wolka;Angelyn O. Fairchild;Shelby D. Reed;Greg Anglin;F. Reed Johnson;Michael Siegel;Rebecca Noel - 通讯作者:
Rebecca Noel
Capturing the Dynamic Nature of Cyber Risk: Evidence from an Explorative Case Study
捕捉网络风险的动态本质:探索性案例研究的证据
- DOI:
10.24251/hicss.2023.738 - 发表时间:
2023 - 期刊:
- 影响因子:29.3
- 作者:
S. Zeijlemaker;Michael Siegel - 通讯作者:
Michael Siegel
Michael Siegel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Siegel', 18)}}的其他基金
Conference: Conference on Frontiers in Applied and Computational Mathematics (FACM 2023): New trends in computational wave propagation and imaging
会议:应用与计算数学前沿会议(FACM 2023):计算波传播和成像的新趋势
- 批准号:
2246813 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Numerical Methods and Analysis for Interfacial Flow with Ionic Fluids and Surfactants
离子流体和表面活性剂界面流动的数值方法与分析
- 批准号:
1909407 - 财政年份:2019
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Conferences on Frontiers in Applied and Computational Mathematics: 2015-2017
应用与计算数学前沿会议:2015-2017
- 批准号:
1517152 - 财政年份:2015
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Numerical Methods and Analysis for Induced-Charge Electrokinetic Flow with Deformable Interfaces
可变形界面感应电荷动电流的数值方法与分析
- 批准号:
1412789 - 财政年份:2014
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Conference on Frontiers in Applied and Computational Mathematics 2014, May 22 - 23, 2014
2014年应用与计算数学前沿会议,2014年5月22日至23日
- 批准号:
1444295 - 财政年份:2014
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
EXTREEMS-QED: Research and training in computational and data-enabled science and engineering for undergraduates in the mathematical sciences at NJIT
EXTREEMS-QED:为 NJIT 数学科学本科生提供计算和数据支持的科学与工程方面的研究和培训
- 批准号:
1331010 - 财政年份:2013
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Collaborative Research: Efficient surface-based numerical methods for 3D interfacial flow with surface tension
合作研究:基于表面的高效数值方法,用于具有表面张力的 3D 界面流动
- 批准号:
1016406 - 财政年份:2010
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Collaborative Research: Numerics and Analysis of Singularities for the Euler Equations
合作研究:欧拉方程的数值和奇异性分析
- 批准号:
0707263 - 财政年份:2007
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Analysis and numerical computations of free boundaries in fluid dynamics: surfactant solubility and elastic fibers
流体动力学中自由边界的分析和数值计算:表面活性剂溶解度和弹性纤维
- 批准号:
0708977 - 财政年份:2007
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularity Formation for the Three-Dimensional Euler Equations and Related Problems
FRG:协作研究:三维欧拉方程的奇异性形成及相关问题
- 批准号:
0354560 - 财政年份:2004
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
相似国自然基金
复杂图像处理中的自由非连续问题及其水平集方法研究
- 批准号:60872130
- 批准年份:2008
- 资助金额:28.0 万元
- 项目类别:面上项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
- 批准号:
2343135 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
eMB: Collaborative Research: Mechanistic models for seasonal avian migration: Analysis, numerical methods, and data analytics
eMB:协作研究:季节性鸟类迁徙的机制模型:分析、数值方法和数据分析
- 批准号:
2325195 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
CAREER: Numerical Analysis for Meshfree and Particle Methods via Nonlocal Models
职业:通过非局部模型进行无网格和粒子方法的数值分析
- 批准号:
2240180 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
eMB: Collaborative Research: Mechanistic models for seasonal avian migration: Analysis, numerical methods, and data analytics
eMB:协作研究:季节性鸟类迁徙的机制模型:分析、数值方法和数据分析
- 批准号:
2325196 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Numerical Methods in Noncommutative Matrix Analysis
非交换矩阵分析中的数值方法
- 批准号:
2110398 - 财政年份:2021
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
- 批准号:
2107934 - 财政年份:2021
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
A novel development of optimization and deep learning methods based on the idea of structure-preserving numerical analysis
基于结构保持数值分析思想的优化和深度学习方法的新发展
- 批准号:
21H03452 - 财政年份:2021
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Efficient Numerical Solution for Constrained Tensor Ring Decomposition: A Theoretical Convergence Analysis and Applications
约束张量环分解的高效数值解:理论收敛性分析及应用
- 批准号:
20K19749 - 财政年份:2020
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Mathematical Analysis and Numerical Methods for Peridynamics and Nonlocal Models
近场动力学和非局部模型的数学分析和数值方法
- 批准号:
2044945 - 财政年份:2020
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Establishing analysis methods for characterizing heat transport via numerical calculation
通过数值计算建立表征热传输的分析方法
- 批准号:
20K14659 - 财政年份:2020
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




