Analysis and numerical computations of free boundaries in fluid dynamics: surfactant solubility and elastic fibers
流体动力学中自由边界的分析和数值计算:表面活性剂溶解度和弹性纤维
基本信息
- 批准号:0708977
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-15 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal is for the investigation of fundamental free boundary problems in fluid mechanics that are motivated by different applications but share similar mathematical features. The first class of problems concerns the effect that the solubility of a surfactant in the bulk flow of immiscible fluids can have on the deformation and breakup of liquid drops, bubbles, and jets. A significant difficulty is introduced by the slow diffusion (or large Peclet number) of surfactant in the bulk flow, which causes a large gradient in concentration of surfactant to occur across a thin layer adjacent to the interface between immiscible fluids. Resolving the surfactant gradient near the interface must be accomplished with great accuracy to determine the interface's dynamics but presents a significant challenge for traditional numerical methods. In this project, the slenderness of the layer will be used to develop fast and accurate 'hybrid' numerical methods that incorporate a separate analytical reduction of the layer's dynamics into numerical solution of the interfacial free boundary problem. The second class of problems concerns the deformation of a slender elastic fiber or filament when it is influenced by capillary forces at a fluid interface. This project will develop a robust and efficient numerical method that uses one-dimensional integral equations from slender body theory to describe the fiber's dynamics and takes into account the interaction between fluid, filament, and free surface.Surfactants, such as alcohols, sulfates, and detergents, are widely used to control the dynamics of emulsification or blending of fluid systems in applications in the chemical and pharmaceutical industries. At a fundamental level, the emulsification process occurs via the behavior of single fluid drops and jets as they break up by bursting or tip-streaming in a straining flow. This project seeks to determine details of the mode of breakup that are important in practice but have so far been difficult to capture accurately by traditional numerical methods. Similarly, sticking and stiction of slender elastic filaments and cantilevers is important in the proper operation of specific micro-electromechanical devices, and filament-fluid interfacial forces are being investigated as a means to assemble filaments into larger structures, such as nanotube rings and biological filamented structures. This project seeks to elucidate fundamental effects that occur in such processes by incorporating analytical techniques for the resolution of small-scale structures into fast and accurate, robust numerical methods.
这一建议是为了研究流体力学中的基本自由边界问题,这些问题是由不同的应用驱动的,但具有相似的数学特征。第一类问题涉及表面活性剂在非混相流体的大量流动中的溶解度对液滴、气泡和射流的变形和破裂的影响。表面活性剂在整体流动中的缓慢扩散(或大的佩莱特数)导致表面活性剂的浓度在靠近非混相流体界面的薄层上发生大的梯度,这带来了一个重大的困难。为了确定界面的动力学性质,必须精确地求解界面附近的表面活性剂梯度,这对传统的数值方法提出了重大挑战。在这个项目中,层的长细将用于开发快速和准确的“混合”数值方法,将层的动力学的单独分析还原纳入界面自由边界问题的数值解中。第二类问题涉及细长的弹性纤维或长丝在流体界面受到毛细力影响时的变形。本项目将开发一种鲁棒和高效的数值方法,使用细长体理论的一维积分方程来描述纤维的动力学,并考虑流体,长丝和自由表面之间的相互作用。表面活性剂,如醇、硫酸盐和洗涤剂,广泛用于控制化学和制药工业中流体系统的乳化或混合动力学。在基本层面上,乳化过程是通过单个液滴和射流的行为发生的,因为它们在紧张流动中破裂或尖端流动。该项目旨在确定在实践中很重要的破裂模式的细节,但迄今为止难以通过传统的数值方法准确捕获。同样,细长的弹性细丝和悬臂的粘着和粘着对于特定的微机电装置的正常运行是重要的,而细丝-流体界面力正在被研究作为将细丝组装成更大结构的手段,如纳米管环和生物细丝结构。该项目旨在通过将小型结构的解析技术纳入快速、准确、可靠的数值方法,阐明在这些过程中发生的基本影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Siegel其他文献
Motion of a disk embedded in a nearly inviscid Langmuir film. Part 1. Translation
嵌入几乎无粘性朗缪尔薄膜中的圆盘的运动。
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:3.7
- 作者:
E. Yariv;Rodolfo Brandão;Michael Siegel;H. A. Stone - 通讯作者:
H. A. Stone
Tu1662: COMPARISON OF QUALITY PERFORMANCE METRICS IN SCREENING AND SURVEILLANCE COLONOSCOPY: A SINGLE-CENTER EXPERIENCE
- DOI:
10.1016/s0016-5085(22)62444-2 - 发表时间:
2022-05-01 - 期刊:
- 影响因子:
- 作者:
James S. Love;Meredith Yellen;Jeffrey Rebhun;Michael Siegel;Asim Shuja - 通讯作者:
Asim Shuja
Highlights from the Field of Pediatric Dermatology Research from the 2023 PeDRA Annual Conference
2023 年小儿皮肤科研究领域亮点来自于小儿皮肤科研究协会年会
- DOI:
10.1016/j.jid.2024.09.014 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:5.700
- 作者:
Hannah R. Chang;Morgan Dykman;Leslie Castelo-Soccio;Colleen H. Cotton;Carrie C. Coughlin;Elena B. Hawryluk;Leslie Lawley;Lara Wine Lee;Kalyani Marathe;Dawn H. Siegel;JiaDe Yu;PeDRA Focused Study Group Leads;Michael Siegel;Esteban Fernández Faith;Lisa Arkin - 通讯作者:
Lisa Arkin
Effective Partnering in Conducting Benefit-Risk Patient Preference Studies: Perspectives From a Patient Advocacy Organization, a Pharmaceutical Company, and Academic Stated-Preference Researchers
- DOI:
10.1177/2168479017746404 - 发表时间:
2018-12-30 - 期刊:
- 影响因子:1.900
- 作者:
Anne M. Wolka;Angelyn O. Fairchild;Shelby D. Reed;Greg Anglin;F. Reed Johnson;Michael Siegel;Rebecca Noel - 通讯作者:
Rebecca Noel
Capturing the Dynamic Nature of Cyber Risk: Evidence from an Explorative Case Study
捕捉网络风险的动态本质:探索性案例研究的证据
- DOI:
10.24251/hicss.2023.738 - 发表时间:
2023 - 期刊:
- 影响因子:29.3
- 作者:
S. Zeijlemaker;Michael Siegel - 通讯作者:
Michael Siegel
Michael Siegel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Siegel', 18)}}的其他基金
Conference: Conference on Frontiers in Applied and Computational Mathematics (FACM 2023): New trends in computational wave propagation and imaging
会议:应用与计算数学前沿会议(FACM 2023):计算波传播和成像的新趋势
- 批准号:
2246813 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Numerical Methods and Analysis for Interfacial Flow with Ionic Fluids and Surfactants
离子流体和表面活性剂界面流动的数值方法与分析
- 批准号:
1909407 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
Conferences on Frontiers in Applied and Computational Mathematics: 2015-2017
应用与计算数学前沿会议:2015-2017
- 批准号:
1517152 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
Numerical Methods and Analysis for Induced-Charge Electrokinetic Flow with Deformable Interfaces
可变形界面感应电荷动电流的数值方法与分析
- 批准号:
1412789 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Standard Grant
Conference on Frontiers in Applied and Computational Mathematics 2014, May 22 - 23, 2014
2014年应用与计算数学前沿会议,2014年5月22日至23日
- 批准号:
1444295 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Standard Grant
EXTREEMS-QED: Research and training in computational and data-enabled science and engineering for undergraduates in the mathematical sciences at NJIT
EXTREEMS-QED:为 NJIT 数学科学本科生提供计算和数据支持的科学与工程方面的研究和培训
- 批准号:
1331010 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Continuing Grant
Numerical methods and analysis for interfacial fluid flow with soluble surfactant
可溶性表面活性剂界面流体流动的数值方法与分析
- 批准号:
1009105 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: Efficient surface-based numerical methods for 3D interfacial flow with surface tension
合作研究:基于表面的高效数值方法,用于具有表面张力的 3D 界面流动
- 批准号:
1016406 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: Numerics and Analysis of Singularities for the Euler Equations
合作研究:欧拉方程的数值和奇异性分析
- 批准号:
0707263 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularity Formation for the Three-Dimensional Euler Equations and Related Problems
FRG:协作研究:三维欧拉方程的奇异性形成及相关问题
- 批准号:
0354560 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
超声行波微流体驱动机理的试验研究
- 批准号:51075243
- 批准年份:2010
- 资助金额:39.0 万元
- 项目类别:面上项目
关于图像处理模型的目标函数构造及其数值方法研究
- 批准号:11071228
- 批准年份:2010
- 资助金额:32.0 万元
- 项目类别:面上项目
非管井集水建筑物取水机理的物理模拟及计算模型研究
- 批准号:40972154
- 批准年份:2009
- 资助金额:41.0 万元
- 项目类别:面上项目
孔隙介质中化学渗流溶解面非稳定性的理论分析与数值模拟实验研究
- 批准号:10872219
- 批准年份:2008
- 资助金额:35.0 万元
- 项目类别:面上项目
相似海外基金
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
- 批准号:
571735-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Accurate matrix computations with numerical validation for next generation computers
下一代计算机的精确矩阵计算和数值验证
- 批准号:
20KK0259 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
- 批准号:
RGPIN-2019-05940 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Developing numerical-relativity codes for high-precision computations of gravitational waves toward third-generation gravitational-wave detectors
开发数值相对论代码,用于第三代引力波探测器的高精度引力波计算
- 批准号:
22K03617 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
- 批准号:
561540-2021 - 财政年份:2021
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Effective use of multi-precision arithmetic on floating number system of digital computers aiming at numerical computations of differential equations with singulari or ill-posedness
针对奇异或不适定微分方程的数值计算,有效利用数字计算机浮点数系统的多精度运算
- 批准号:
21H00999 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
- 批准号:
RGPIN-2019-05940 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Development of Advanced Numerical Techniques for Electromagnetic Field Computations for Design of Engineering Application Using High-Temperature Superconductor
开发用于高温超导体工程应用设计的电磁场计算先进数值技术
- 批准号:
21K04016 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
- 批准号:
RGPIN-2019-05940 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
- 批准号:
RGPIN-2019-05940 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual