Continuous Wafer Production for Solar Cells by Horizontal Ribbon Growth

通过水平带生长连续生产太阳能电池晶圆

基本信息

  • 批准号:
    1438231
  • 负责人:
  • 金额:
    $ 34.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-01 至 2018-06-30
  • 项目状态:
    已结题

项目摘要

1438231 - YdstieThe technology for the direct conversion of sunlight to electricity using solar cells has not yet advanced to a point where it can have a significant impact in markets that do not benefit from government subsidies. The cost of solar cells is still very high and the technologies used to produce solar cells do not easily scale up. At the current rate of growth (20-30% per year) it will take many decades to build enough plants and infra-structure for solar electricity to displace fossil energy sources. Solar energy has so far not measured up to its potential due to the high cost of producing high purity silicon and mono-crystalline silicon wafers. Significant progress has been made in developing cheaper processes for making high purity poly-silicon in fluid bed reactors. Very limited progress has been made in finding alternatives to the expensive band-saw process for wafering. The ideas described in this proposal may contribute towards solving these important problems. The proposed process draws inspiration from the Pilkington glass process, which revolutionized the glass industry. The major objective is to reduce the cost of solar electricity by theoretical development and experimental verification of a continuous process for making silicon wafers. The proposed process could reduce the cost of a solar module by a factor of two relative to current technology and it can be rapidly scaled up since it is continuous. Sub-objectives include the development of models and control theory for coupled fluid flow, heat transfer and solidification in the context of horizontal ribbon growth.Intellectual Merit:This project aims to develop scientific foundations for a continuous process to produce crystalline silicon wafers from high purity poly-silicon. In this process the PIs plan to freeze a very thin (less than 0.3 mm) silicon sheet on top of a silicon melt in a float chamber. Solid silicon floats like ice on water and by careful control it is possible to produce mono-crystalline silicon sheets suitable for solar cells. The sheet can then be withdrawn continuously while silicon raw material is continuously fed to the process at the same rate. The production cost will be low relative to expensive wire saw processes since the new process is continuous and does not incur silicon loss. The PIs plan to study the stabilization and control of a freezing front on a molten substrate and how to design and control systems with several interfaces (gas,solid, liquid). Systems of this type may exhibit several types of instabilities and active control is needed to stabilize the system. These instabilities include the dynamics of the crystallization front, how impurities segregate and the dynamics of the exit meniscus. They will develop multi-scale process models capable and a theory capable of analyzing stability properties for process design and control. The models will be matched to a physical system using experimental data obtained from a large pilot plant at CMU. The simultaneous goal is to develop a theory for how to model, analyze and control complex flow and solidification problems.Broader Impacts:The most important broader impacts of this research are in the area of alternative energy - producing solar panels more economically. The research could lead to new methods for multi-scale modeling and stabilization and control of solidification fronts and multi-phase flow problems. These problems turn up in a number of application areas, including the drying of paints, film processing and coating.
1438231 -Ydstie使用太阳能电池将阳光直接转换为电力的技术尚未发展到可以在不受益于政府补贴的市场中产生重大影响的程度。太阳能电池的成本仍然很高,用于生产太阳能电池的技术不容易扩大规模。以目前的增长率(每年20-30%),将需要几十年的时间来建造足够的太阳能发电厂和基础设施,以取代化石能源。由于生产高纯度硅和单晶硅片的成本很高,太阳能迄今尚未达到其潜力。在开发更便宜的在流化床反应器中制造高纯度多晶硅的工艺方面取得了重大进展。在寻找替代昂贵的带锯制晶工艺方面取得的进展非常有限。本提案中所述的想法可能有助于解决这些重要问题。拟议的工艺从皮尔金顿玻璃工艺中汲取灵感,该工艺彻底改变了玻璃工业。主要目标是通过理论发展和实验验证制造硅片的连续过程来降低太阳能发电的成本。所提出的工艺可以将太阳能电池组件的成本降低到目前技术的两倍,并且由于它是连续的,因此可以迅速扩大规模。子目标包括发展模型和控制理论的耦合流体流动,传热和凝固的背景下,水平带growth.Intellectual优点:这个项目的目的是发展科学基础的连续过程,以生产晶体硅晶片从高纯度多晶硅。在此过程中,PI计划在浮室中的硅熔体顶部冷冻非常薄(小于0.3 mm)的硅片。固体硅像冰一样漂浮在水面上,通过仔细控制,可以生产出适用于太阳能电池的单晶硅片。然后可以连续地取出片材,同时以相同的速率将硅原料连续地进料到该工艺中。相对于昂贵的线锯工艺,生产成本将是低的,因为新工艺是连续的并且不会引起硅损失。PI计划研究熔融基质上冻结前沿的稳定和控制,以及如何设计和控制具有多种界面(气体,固体,液体)的系统。这种类型的系统可能会表现出几种类型的不稳定性,需要主动控制来稳定系统。这些不稳定性包括结晶前沿的动力学、杂质如何分离以及出口弯月面的动力学。他们将开发多尺度的过程模型,能够分析过程设计和控制的稳定性。这些模型将使用从CMU的大型试验工厂获得的实验数据与物理系统相匹配。同时的目标是发展一个理论,如何建模,分析和控制复杂的流动和凝固problem.Broader影响:最重要的更广泛的影响,这项研究是在该地区的替代能源生产太阳能电池板更经济。该研究为多尺度建模、凝固前沿稳定化和控制以及多相流问题提供了新的方法。这些问题出现在许多应用领域,包括油漆的干燥,薄膜加工和涂层。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Erik Ydstie其他文献

Erik Ydstie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Erik Ydstie', 18)}}的其他基金

From Research to Practice and Practice to Research in the Era of Cyber Physical Systems
信息物理系统时代从研究到实践再从实践到研究
  • 批准号:
    1659949
  • 财政年份:
    2016
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Standard Grant
Multi-scale Modeling for Scale-up and Control of a New Solar Cell Wafering Process
用于新型太阳能电池晶圆工艺放大和控制的多尺度建模
  • 批准号:
    0932556
  • 财政年份:
    2009
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Standard Grant
GOALI: Integrating Micro-scale Physical Chemistry, Fluid-Flow and Process Control for Conceptual Design of a New Aluminum Process
目标:集成微尺度物理化学、流体流动和过程控制,进行新型铝工艺的概念设计
  • 批准号:
    0457026
  • 财政年份:
    2005
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Standard Grant
ITR: Distributed Resource Planning of Process Networks
ITR:过程网络的分布式资源规划
  • 批准号:
    0312771
  • 财政年份:
    2003
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Standard Grant
CISE Research Instrumentation: Computational Techniques for Distributed Process Engineering
CISE 研究仪器:分布式过程工程的计算技术
  • 批准号:
    9617360
  • 财政年份:
    1997
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Standard Grant
GOALI: Distributed Control of Process Systems: An Approach Based on Thermodynamics
GOALI:过程系统的分布式控制:基于热力学的方法
  • 批准号:
    9726115
  • 财政年份:
    1997
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Standard Grant
Multivariable Adaptive Control via Non-Convex Optimization
通过非凸优化的多变量自适应控制
  • 批准号:
    9508654
  • 财政年份:
    1995
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Continuing Grant
The Macroscopic Theory of Process Control
过程控制的宏观理论
  • 批准号:
    9316572
  • 财政年份:
    1994
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Continuing Grant
Nonlinear Adaptive Control Theory Applied for Chemical Process Control
非线性自适应控制理论在化工过程控制中的应用
  • 批准号:
    8903160
  • 财政年份:
    1989
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Continuing Grant
Pattern Recognition and Feedback via Parallel Distributed Computation
通过并行分布式计算进行模式识别和反馈
  • 批准号:
    8802268
  • 财政年份:
    1988
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Standard Grant

相似海外基金

SBIR Phase I: Universal Crystal Growth Capsule and Novel Wafer Dicing Tool for In-Space Manufacturing
SBIR 第一阶段:用于太空制造的通用晶体生长舱和新型晶圆切割工具
  • 批准号:
    2419346
  • 财政年份:
    2024
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Standard Grant
Capability for wafer-level sub-nanometre scale imaging
晶圆级亚纳米级成像能力
  • 批准号:
    EP/X041166/1
  • 财政年份:
    2023
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Research Grant
Wafer-Scale Ultrathin Layered Device Array Assembly through a Precision Soft-Robotic Stamp Transfer Process
通过精密软机器人印模转移工艺组装晶圆级超薄分层器件阵列
  • 批准号:
    2243477
  • 财政年份:
    2023
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Standard Grant
Time-resolved spectroscopic and microscopic measurements of multiple quantum well (MQW) on porous GaN wafer
多孔 GaN 晶圆上多量子阱 (MQW) 的时间分辨光谱和显微测量
  • 批准号:
    10061384
  • 财政年份:
    2023
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Collaborative R&D
Key molecules derived from enzymatic treatment of wafer batter and their impact on batter rheology
威化面糊酶处理衍生的关键分子及其对面糊流变学的影响
  • 批准号:
    2786639
  • 财政年份:
    2023
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Studentship
Linear On-Wafer Vector-Network-Analysis
线性晶圆上矢量网络分析
  • 批准号:
    508759090
  • 财政年份:
    2023
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Major Research Instrumentation
STTR Phase I: Wafer-Integrated Soft Magnetic Composite Films for Inductors with High Power Density and Efficiency
STTR 第一阶段:用于高功率密度和效率电感器的晶圆集成软磁复合薄膜
  • 批准号:
    2304631
  • 财政年份:
    2023
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Standard Grant
Key molecules derived from enzymatic treatment of wafer batter and their impact on batter rheology
威化面糊酶处理衍生的关键分子及其对面糊流变学的影响
  • 批准号:
    BB/X512102/1
  • 财政年份:
    2023
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Training Grant
8” Wafer-Processible INFIQ® QD Ink Development for SWIR QD Photodetector Manufacturing
用于 SWIR QD 光电探测器制造的 8 晶圆可加工 INFIQ® QD 墨水开发
  • 批准号:
    10073758
  • 财政年份:
    2023
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Collaborative R&D
GOALI: ASCENT: Wafer-Scale Computational System (WaSCoS) with heterogeneous integration, power-heat transport, and optical interconnects
目标:ASCENT:具有异构集成、功率热传输和光学互连的晶圆级计算系统 (WaSCoS)
  • 批准号:
    2231097
  • 财政年份:
    2022
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了