XPS:FULL:DSD: A novel framework for developing highly scalable and energy efficient guaranteed quality mesh generation for 3D and 4D finite element analysis
XPS:FULL:DSD:一种新颖的框架,用于开发高度可扩展且节能的保证质量网格生成,用于 3D 和 4D 有限元分析
基本信息
- 批准号:1439079
- 负责人:
- 金额:$ 85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2020-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Computational science is one of the "three pillars," complementing traditional theoretical and physical experimental studies in science and engineering. Parallel finite element mesh generation is a critical building block for this pillar and is becoming even more relevant for a growing number of engineering and life science applications. This project will set up a trajectory to deliver the first exascale-era unstructured finite element (FE) guaranteed quality Delaunay mesh generation.Why is FE mesh generation an important computational science tool? Many partial differential equations (PDEs) that are used to model complex multi-scale phenomena such as blood flow in the human body can only be solved by numerical approximation techniques. These techniques require the approximation of the domain by tessellating it into simpler geometric shapes such as triangles and tetrahedra in two and three dimensions, respectively. This project's focus is in 3D and 4D tessellation methods for life science applications such as blood flow simulations for Cerebro-Vascular Disease (CVD, or stroke), one of the leading natural causes of death in the US. In order to deliver exascale-era mesh generation, this project is set to achieve billion-way concurrency using substantially less electric power than today's state-of-the-art methods. This goal will be achieved by focusing on the following three objectives: (1) Integration of multiple parallel Delaunay mesh generation methods into a telescopic framework. (2) Development of application-specific models that describe the inherent concurrency and data access patterns of this framework. (3) Development of domain-specific energy-efficient and component-level (core and memory) power scaling for massively parallel mesh generation methods. This project will have broader impact in many other life science applications such as those related to the President's BRAIN Initiative. For example, the mesh generation techniques from this project can be customized to perform (by 2020) computer simulations to understand the circuitry of the human brain - an important milestone to help understand diseases like Parkinson's and Alzheimer's, which are expected to increase with the aging of the U.S. population. Finally, this project will contribute via the PI's MERIT outreach program for STEM education in K-12 and college students. The PI's goal is to "mentor, excite, and retain" students and help them to identify STEM areas of study that will transform them into responsible college graduates. The PI's MERIT Freshman Seminars (as opposed to traditional Freshman Seminars) re-connect students in the context of Research Experiences for Undergraduates (REU) activities (based on students interests) with highly visible national priorities such as the President's BRAIN Initiative. The MERIT program covers a variety of topics to reach as many students as possible with diverse interests and background. The goal is to prepare computational scientists to be entrepreneurs capable of understanding the ethical, economic, and research challenges in health care we face today.
计算科学是“三大支柱”之一,是对科学和工程领域传统理论和物理实验研究的补充。并行有限元网格生成是这一支柱的关键组成部分,并且在越来越多的工程和生命科学应用中变得越来越重要。该项目将建立一个轨迹来交付&;#64257;第一个百亿亿次非结构有限元(FE)保证质量的Delaunay网格生成。为什么有限元网格生成是一个重要的计算科学工具?许多用于模拟复杂多尺度现象(如人体血流)的偏微分方程(PDEs)只能通过数值近似技术来求解。这些技术需要通过将域细分成更简单的几何形状,如三角形和四面体,分别在二维和三维中逼近域。该项目的重点是生命科学应用的3D和4D镶嵌方法,如脑血管疾病(CVD或中风)的血流模拟,这是美国主要的自然死亡原因之一。为了实现百亿亿次的网格生成,该项目将使用比目前最先进的方法少得多的电力来实现十亿路并发。这一目标将通过以下三个目标来实现:(1)将多个并行Delaunay网格生成方法集成到一个伸缩框架中。(2)开发应用规格&;#64257;描述该框架固有的并发性和数据访问模式的C模型。(3)开发domain-spec &;#64257;C节能和组件级(核心和内存)功率缩放大规模并行网格生成方法。该项目将对许多其他生命科学应用产生更广泛的影响,例如与总统大脑计划相关的应用。例如,这个项目的网格生成技术可以定制,以执行(到2020年)计算机模拟,以了解人类大脑的电路——这是一个重要的里程碑,有助于了解帕金森症和阿尔茨海默氏症等疾病,这些疾病预计将随着美国人口的老龄化而增加。最后,该项目将通过PI的MERIT外展计划为K-12和大学生的STEM教育做出贡献。PI的目标是“指导、激励和留住”学生,并帮助他们确定STEM研究领域,从而将他们转变为负责任的大学毕业生。PI的MERIT新生研讨会(与传统的新生研讨会相反)在本科生研究经验(REU)活动(基于学生的兴趣)的背景下,将学生与高度可见的国家优先事项(如总统的大脑倡议)重新联系起来。MERIT计划涵盖了各种主题,以接触尽可能多的具有不同兴趣和背景的学生。我们的目标是将计算科学家培养成能够理解我们今天在医疗保健领域面临的伦理、经济和研究挑战的企业家。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nikos Chrisochoides其他文献
Parallel N-Dimensional Exact Signed Euclidean Distance Transform
并行 N 维精确符号欧氏距离变换
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
R. Staubs;Andrey Fedorov;Leonidas Linardakis;Benjamin Dunton;Nikos Chrisochoides - 通讯作者:
Nikos Chrisochoides
Tasking framework for adaptive speculative parallel mesh generation
用于自适应推测并行网格生成的任务框架
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:3.3
- 作者:
C. Tsolakis;Polykarpos Thomadakis;Nikos Chrisochoides - 通讯作者:
Nikos Chrisochoides
3-D Parallel Exact Signed Euclidean Distance Transform Release 1
3-D 并行精确带符号欧几里得距离变换版本 1
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
R. Staubs;Andrey Fedorov;Leonidas Linardakis;Benjamin Dunton;Nikos Chrisochoides - 通讯作者:
Nikos Chrisochoides
Towards Distributed Semi-speculative Adaptive Anisotropic Parallel Mesh Generation
走向分布式半推测自适应各向异性并行网格生成
- DOI:
10.48550/arxiv.2312.13433 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Kevin M. Garner;C. Tsolakis;Polykarpos Thomadakis;Nikos Chrisochoides - 通讯作者:
Nikos Chrisochoides
Multithreaded runtime framework for parallel and adaptive applications
- DOI:
10.1007/s00366-022-01713-7 - 发表时间:
2022-07-31 - 期刊:
- 影响因子:4.900
- 作者:
Polykarpos Thomadakis;Christos Tsolakis;Nikos Chrisochoides - 通讯作者:
Nikos Chrisochoides
Nikos Chrisochoides的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nikos Chrisochoides', 18)}}的其他基金
Introducing Next Generation of STEM Students to Mesh Modeling for Simulation and Visualization
向下一代 STEM 学生介绍用于仿真和可视化的网格建模
- 批准号:
1346401 - 财政年份:2013
- 资助金额:
$ 85万 - 项目类别:
Standard Grant
CSR-CSI: Software Environment for Real-Time Non-Rigid Registration using Commodity and Grid Computing
CSR-CSI:使用商品和网格计算进行实时非刚性注册的软件环境
- 批准号:
1136536 - 财政年份:2011
- 资助金额:
$ 85万 - 项目类别:
Standard Grant
AF:Small:A Novel Algorithmic Approach for Real-Time Image-to-Mesh Conversion of Brain MRI
AF:Small:脑 MRI 实时图像到网格转换的新颖算法方法
- 批准号:
1139864 - 财政年份:2011
- 资助金额:
$ 85万 - 项目类别:
Standard Grant
A Multi-Layered Finite Element Application and Runtime System for Scalable High-End Computer Architectures
用于可扩展高端计算机架构的多层有限元应用程序和运行时系统
- 批准号:
1136538 - 财政年份:2011
- 资助金额:
$ 85万 - 项目类别:
Standard Grant
AF:Small:A Novel Algorithmic Approach for Real-Time Image-to-Mesh Conversion of Brain MRI
AF:Small:脑 MRI 实时图像到网格转换的新颖算法方法
- 批准号:
0916526 - 财政年份:2009
- 资助金额:
$ 85万 - 项目类别:
Standard Grant
A Multi-Layered Finite Element Application and Runtime System for Scalable High-End Computer Architectures
用于可扩展高端计算机架构的多层有限元应用程序和运行时系统
- 批准号:
0833081 - 财政年份:2008
- 资助金额:
$ 85万 - 项目类别:
Standard Grant
SGER: Three-Dimensional Generalized Parallel Delaunay Mesh Generation for the Numerical Solution of Partial Differential Equations
SGER:偏微分方程数值解的三维广义并行 Delaunay 网格生成
- 批准号:
0750901 - 财政年份:2007
- 资助金额:
$ 85万 - 项目类别:
Standard Grant
CSR-CSI: Software Environment for Real-Time Non-Rigid Registration using Commodity and Grid Computing
CSR-CSI:使用商品和网格计算进行实时非刚性注册的软件环境
- 批准号:
0719929 - 财政年份:2007
- 资助金额:
$ 85万 - 项目类别:
Standard Grant
MRI: Acquisition of STEMS: A Laboratory for End-to-End Development of Software and Tools for Emerging Multigrain Supercomputers
MRI:收购 STEMS:新兴多晶超级计算机软件和工具端到端开发实验室
- 批准号:
0521381 - 财政年份:2005
- 资助金额:
$ 85万 - 项目类别:
Standard Grant
ITR: An Application Driven Approach for Runtime Scheduling of Multigrain Adaptive Computations
ITR:一种应用程序驱动的多粒自适应计算运行时调度方法
- 批准号:
0312980 - 财政年份:2003
- 资助金额:
$ 85万 - 项目类别:
Continuing Grant
相似国自然基金
钴基Full-Heusler合金的掺杂效应和薄膜噪声特性研究
- 批准号:51871067
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
XPS: FULL: DSD: Collaborative Research: Parallelizing and Accelerating Metagenomic Applications
XPS:完整:DSD:协作研究:并行化和加速宏基因组应用
- 批准号:
1720635 - 财政年份:2016
- 资助金额:
$ 85万 - 项目类别:
Standard Grant
XPS: FULL: DSD: A Parallel Tensor Infrastructure (ParTI!) for Data Analysis
XPS:完整:DSD:用于数据分析的并行张量基础设施 (PartTI!)
- 批准号:
1533768 - 财政年份:2015
- 资助金额:
$ 85万 - 项目类别:
Standard Grant
XPS: FULL: DSD: Parallel Motion Planning for Cloud-connected Robots
XPS:完整:DSD:云连接机器人的并行运动规划
- 批准号:
1533844 - 财政年份:2015
- 资助金额:
$ 85万 - 项目类别:
Standard Grant
XPS: FULL: DSD: Collaborative Research: Parallelizing and Accelerating Metagenomic Applications
XPS:完整:DSD:协作研究:并行化和加速宏基因组应用
- 批准号:
1533933 - 财政年份:2015
- 资助金额:
$ 85万 - 项目类别:
Standard Grant
XPS: FULL: DSD: Collaborative Research: FPGA Cloud Platform for Deep Learning, Applications in Computer Vision
XPS:完整:DSD:协作研究:深度学习 FPGA 云平台、计算机视觉应用
- 批准号:
1533771 - 财政年份:2015
- 资助金额:
$ 85万 - 项目类别:
Standard Grant
XPS: FULL: DSD: Scalable High Performance with Halide and Simit Domain Specific Languages
XPS:完整:DSD:使用 Halide 和 Simit 领域特定语言的可扩展高性能
- 批准号:
1533753 - 财政年份:2015
- 资助金额:
$ 85万 - 项目类别:
Standard Grant
XPS: FULL: DSD: Collaborative Research: Parallelizing and Accelerating Metagenomic Applications
XPS:完整:DSD:协作研究:并行化和加速宏基因组应用
- 批准号:
1533797 - 财政年份:2015
- 资助金额:
$ 85万 - 项目类别:
Standard Grant
XPS: FULL: DSD: Collaborative Research: Moving the Abyss: Database Management on Future 1000-core Processors
XPS:完整:DSD:协作研究:移动深渊:未来 1000 核处理器上的数据库管理
- 批准号:
1438955 - 财政年份:2014
- 资助金额:
$ 85万 - 项目类别:
Standard Grant
XPS: FULL: DSD: Collaborative Research: Rapid Prototyping HPC Environment for Deep Learning
XPS:完整:DSD:协作研究:深度学习的快速原型 HPC 环境
- 批准号:
1439052 - 财政年份:2014
- 资助金额:
$ 85万 - 项目类别:
Standard Grant
XPS: FULL: DSD: Collaborative Research: Rapid Prototyping HPC Environment for Deep Learning
XPS:完整:DSD:协作研究:深度学习的快速原型 HPC 环境
- 批准号:
1439007 - 财政年份:2014
- 资助金额:
$ 85万 - 项目类别:
Standard Grant