CAREER: In Situ Observation of Coupled Transport and Degradation in Battery Electrodes
职业:原位观察电池电极的耦合传输和降解
基本信息
- 批准号:1454437
- 负责人:
- 金额:$ 50.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-05-01 至 2021-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PI Name: Nelson Proposal ID: 1454437 Transportation accounts for 25% to 30% of U.S. energy consumption. Electric vehicles are one alternative to reducing fossil fuel consumption for transportation. Electric vehicles require rechargeable batteries that balance the electrical energy storage and power delivery needs, and these batteries must have lifetimes that support affordable cost of ownership. The lithium-ion battery is currently the leading technology for electric vehicle applications. Lithium-ion battery power and energy storage capacity can be enhanced by utilizing battery electrode materials that are structured at the nanoscale using principles of nanotechnology. However, the use of nanostructured electrodes may accelerate electrode degradation that reduces battery life. This research award seeks to understand degradation in nanostructured lithium-ion battery electrodes during charging and discharging under realistic conditions. This will be accomplished by using advanced x-ray imaging techniques to visualize what happens to the battery electrode during operation, which has never been done before. Insights from the proposed research will lead to battery material structures that improve battery performance and reliability. These improvements in turn have potential to extend the range and lifetime of hybrid and electric vehicles. The education and outreach programs associated with this award will provide mechanical engineering undergraduate students with hands-on experiences in energy storage processes. The technical goal of this CAREER award is develop a fundamental understanding of the processes leading to degradation of nanostructured spinel cathodes for Li-ion batteries through in situ three-dimensional (3-D) X-ray imaging techniques during battery charge and discharge. The proposed research will test the hypothesis that nanostructured cathodes for high power lithium-ion batteries exhibit accelerated degradation at elevated temperature due to enhanced metal dissolution from the cathode active material. This hypothesis will be tested by fabricating electrodes with ordered and irregular microstructure, characterizing electrode performance over a range of temperatures, and directly observing 3-D microstructure using X-ray nanotomography. During the course of this research program, new contributions to the fields of electrochemical energy conversion and storage are expected. These contributions include the use of 3-D X-ray material tomatographic imaging to help elucidate the interactions between electrode microstructure and degradation mechanisms, revealing the merits and challenges of nanostructured battery architectures, and generation of a documented set of 3-D microstructural data for lithium-ion battery materials that is correlated to battery performance and degradation through electrochemical testing. The education and outreach programs associated with this CAREER award will provide mechanical engineering undergraduate students with hands-on experiences in energy storage processes. Energy storage experiments developed for undergraduate laboratories will be adapted to provide modules for K-12 teacher training programs in schools that serve under-represented groups in STEM fields, and will also support development of exhibits at the U.S. Space and Rocket Center in Huntsville, Alabama that engage diverse audiences with energy storage topics and concepts.
PI 姓名:Nelson 提案 ID:1454437 交通运输占美国能源消耗的 25% 至 30%。 电动汽车是减少交通运输化石燃料消耗的一种替代方案。 电动汽车需要可充电电池来平衡电能存储和电力输送需求,并且这些电池的使用寿命必须能够支持可承受的拥有成本。锂离子电池是目前电动汽车应用的领先技术。 利用纳米技术原理在纳米尺度上构造的电池电极材料可以增强锂离子电池的功率和能量存储容量。 然而,使用纳米结构电极可能会加速电极退化,从而缩短电池寿命。该研究奖项旨在了解纳米结构锂离子电池电极在实际条件下充电和放电过程中的退化情况。 这将通过使用先进的 X 射线成像技术来实现,以可视化电池电极在运行过程中发生的情况,这是以前从未做过的。 拟议研究的见解将带来提高电池性能和可靠性的电池材料结构。这些改进反过来有可能延长混合动力和电动汽车的行驶里程和使用寿命。 与该奖项相关的教育和推广计划将为机械工程本科生提供储能过程的实践经验。 该职业奖的技术目标是通过电池充电和放电过程中的原位三维 (3-D) X 射线成像技术,对导致锂离子电池纳米结构尖晶石阴极退化的过程有一个基本的了解。 拟议的研究将检验这样的假设:由于阴极活性材料中金属的溶解增强,高功率锂离子电池的纳米结构阴极在高温下表现出加速降解。该假设将通过制造具有有序和不规则微观结构的电极、表征电极在一定温度范围内的性能以及使用 X 射线纳米断层扫描直接观察 3D 微观结构来进行测试。 在该研究计划的过程中,预计会对电化学能量转换和存储领域做出新的贡献。 这些贡献包括使用 3D X 射线材料断层成像来帮助阐明电极微观结构和降解机制之间的相互作用,揭示纳米结构电池结构的优点和挑战,以及通过电化学测试生成与电池性能和降解相关的锂离子电池材料的一组记录的 3D 微观结构数据。与该职业奖相关的教育和推广计划将为机械工程本科生提供储能过程的实践经验。 为本科实验室开发的储能实验将进行调整,为学校的 K-12 教师培训项目提供模块,为 STEM 领域代表性不足的群体提供服务,还将支持阿拉巴马州亨茨维尔美国太空和火箭中心的展览开发,吸引不同的观众了解储能主题和概念。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
George Nelson其他文献
Bronchoalveolar Lavage Plasmacytosis in a Patient with a Plasma Cell Dyscrasia
- DOI:
10.1378/chest.95.1.226 - 发表时间:
1989-01-01 - 期刊:
- 影响因子:
- 作者:
Phillip Menashe;William Stenson;Gustavo Reynoso;Margaret Keane;Kesav G. Nair;George Nelson - 通讯作者:
George Nelson
Resolution of a fungal mycotic aneurysm after a contaminated steroid injection: a case report
注射受污染的类固醇后真菌性动脉瘤的消退:病例报告
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:1.8
- 作者:
George Nelson;O. Fermo;K. Thakur;Elizabeth Felton;J. Bang;L. Wilson;S. Rhee;R. Llinas;K. Johnson;D. Sullivan - 通讯作者:
D. Sullivan
Bedside Hand Grip Assessment with the Sphygmomanometer
- DOI:
10.1007/s11606-013-2426-0 - 发表时间:
2013-04-09 - 期刊:
- 影响因子:4.200
- 作者:
Kara Denby;George Nelson;Carlos A. Estrada - 通讯作者:
Carlos A. Estrada
The yin‐yang driving urinary tract infection and how proteomics can enhance research, diagnostics, and treatment
阴阳驱动尿路感染以及蛋白质组学如何加强研究、诊断和治疗
- DOI:
10.1002/prca.201500018 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
K. A. Floyd;A. Meyer;George Nelson;M. Hadjifrangiskou - 通讯作者:
M. Hadjifrangiskou
Pilot Study of De-Implementation of Empiric Vancomycin Use in Surgical Inpatients
- DOI:
10.1016/j.jamcollsurg.2019.08.700 - 发表时间:
2019-10-01 - 期刊:
- 影响因子:
- 作者:
Leah Chisholm;Jennifer Robles;Matthew Marshall;George Nelson;Daniel Barocas - 通讯作者:
Daniel Barocas
George Nelson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('George Nelson', 18)}}的其他基金
Collaborative Research: Sodiation Driven Multiscale Chemical-Structural Interactions in Alloy Electrodes
合作研究:合金电极中钠化驱动的多尺度化学结构相互作用
- 批准号:
1804629 - 财政年份:2018
- 资助金额:
$ 50.25万 - 项目类别:
Standard Grant
Mini-Symposium: Multiphysics Coupling in Energy Storage, Houston, TX, November 11 - 19, 2015
小型研讨会:储能中的多物理场耦合,德克萨斯州休斯顿,2015 年 11 月 11 日至 19 日
- 批准号:
1550512 - 财政年份:2015
- 资助金额:
$ 50.25万 - 项目类别:
Standard Grant
Collaborative Research: Mesoscale Investigation of Microstructure-Transport Interaction of High-Capacity Electrodes for Energy Storage
合作研究:用于储能的高容量电极的微结构-输运相互作用的介观研究
- 批准号:
1438683 - 财政年份:2014
- 资助金额:
$ 50.25万 - 项目类别:
Standard Grant
North Cascades and Olympic Science Partnership
北喀斯喀特和奥林匹克科学合作伙伴关系
- 批准号:
0315060 - 财政年份:2003
- 资助金额:
$ 50.25万 - 项目类别:
Cooperative Agreement
Technology Education Research Conference
技术教育研究会议
- 批准号:
0090761 - 财政年份:2000
- 资助金额:
$ 50.25万 - 项目类别:
Standard Grant
A Proposal to Develop a Coordinated Set of Tools for Science Education Reform and Foster their Effective Use
开发一套协调的科学教育改革工具并促进其有效使用的建议
- 批准号:
9618093 - 财政年份:1997
- 资助金额:
$ 50.25万 - 项目类别:
Continuing Grant
PROJECT 2061: Education for a Changing Future
项目 2061:改变未来的教育
- 批准号:
9350003 - 财政年份:1993
- 资助金额:
$ 50.25万 - 项目类别:
Continuing Grant
Fy 81 Science Faculty Professional Development Program
81 财年理学院专业发展计划
- 批准号:
8165039 - 财政年份:1981
- 资助金额:
$ 50.25万 - 项目类别:
Standard Grant
相似国自然基金
基于纳米效应的in situ激光诱导击穿光谱(LIBS)增强特性的研究
- 批准号:21603090
- 批准年份:2016
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
就地(in situ)宇宙成因碳十四(14C)法研究基岩区古地震——以狼山山前断裂为例
- 批准号:41572196
- 批准年份:2015
- 资助金额:80.0 万元
- 项目类别:面上项目
多组分复杂体系in-situ MMCs中有效增强相形成的热力学与动力学机制研究
- 批准号:50671064
- 批准年份:2006
- 资助金额:28.0 万元
- 项目类别:面上项目
电化学现场(in situ)分子水平信息的检测与理论
- 批准号:29233070
- 批准年份:1992
- 资助金额:50.0 万元
- 项目类别:重点项目
相似海外基金
Virtual Integration of Satellite and In-Situ Observation Networks (VISION)
卫星和原位观测网络的虚拟集成(VISION)
- 批准号:
NE/Z503393/1 - 财政年份:2024
- 资助金额:
$ 50.25万 - 项目类别:
Research Grant
Autonomous Multi-Format In-Situ Observation Platform for Atmospheric Carbon Dioxide and Methane Monitoring in Permafrost & Wetlands (MISO)
多年冻土层大气二氧化碳和甲烷监测自主多格式原位观测平台
- 批准号:
10061165 - 财政年份:2023
- 资助金额:
$ 50.25万 - 项目类别:
EU-Funded
In situ observation of mechanical response of polymers doped with aggregation-induced emission probes
原位观察掺杂聚集诱导发射探针的聚合物的机械响应
- 批准号:
23K04852 - 财政年份:2023
- 资助金额:
$ 50.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Observation for dynamic process of dental caries by in situ 4D imaging
原位4D成像观察龋齿动态过程
- 批准号:
23K16022 - 财政年份:2023
- 资助金额:
$ 50.25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
In-situ observation of wear based on passivation behavior of corrosion resistant materials in high temperature and high pressure environments
基于耐腐蚀材料在高温高压环境下钝化行为的磨损原位观察
- 批准号:
23K03646 - 财政年份:2023
- 资助金额:
$ 50.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigation of delamination mechanism of thermal barrier coating during thermal cycling based on in-situ observation
基于原位观测的热障涂层热循环分层机理研究
- 批准号:
23K13224 - 财政年份:2023
- 资助金额:
$ 50.25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidation of multi-component diffusion phenomena and comprehensive study of lithium deposition mechanism by in-situ observation techniques
原位观测技术阐明多组分扩散现象并综合研究锂沉积机理
- 批准号:
23KJ0054 - 财政年份:2023
- 资助金额:
$ 50.25万 - 项目类别:
Grant-in-Aid for JSPS Fellows
In-situ observation of calcium dynamics among seawater, mother fluid and calcite during foraminifearl chamber formation
有孔虫室形成过程中海水、母液和方解石之间钙动态的原位观察
- 批准号:
23K03568 - 财政年份:2023
- 资助金额:
$ 50.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of in-situ observation method for damage accumulation process under pure cyclic Mode II loading
纯循环II型荷载损伤累积过程原位观测方法开发
- 批准号:
22K03810 - 财政年份:2022
- 资助金额:
$ 50.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigation on fiber property with in-situ observation of fiber structure development
通过原位观察纤维结构发展来研究纤维性能
- 批准号:
22K05226 - 财政年份:2022
- 资助金额:
$ 50.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




