Collaborative Research: Sodiation Driven Multiscale Chemical-Structural Interactions in Alloy Electrodes

合作研究:合金电极中钠化驱动的多尺度化学结构相互作用

基本信息

  • 批准号:
    1804629
  • 负责人:
  • 金额:
    $ 23.29万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

There is a critical need to dramatically increase the integration of renewable energy in the electric grid. The inherently intermittent and diffuse nature of these renewable resources predicates the development of cost-effective, large-scale energy storage. Such storage capabilities offer the added benefit of contributing resilience to the electric grid, which is needed to mitigate the effects of natural disasters and other catastrophic events. Electrochemical energy storage technologies based on earth abundant and cost-effective materials are increasingly needed. The sodium ion battery and tin (Sn) based alloy anode materials are promising technologies for this application that needs high-capacity energy storage. Through this fundamental research project, stronger connection is made between the chemical and structural changes due to sodium storage in Sn-based alloys and the resulting performance of the sodium ion battery. The research project contributes to the education and training of both graduate and undergraduate students within a multidisciplinary research environment. The integrated education and outreach plan will create opportunities for graduate, undergraduate, and high school students to be involved in this research and places a strong emphasis on increasing the participation of students from underrepresented groups. Research findings will be integrated into the curriculum at the undergraduate and graduate level through lectures and laboratory classes. A library of open-source data generated from the comprehensive experiment, characterization, and simulation efforts will lead to the advancement of energy storage science. By facilitating the future development of sodium ion batteries, the project will help contribute to the societal need for cost-effective grid energy storage. The principal objective of this research is to develop a comprehensive knowledge base and understanding of the chemical and structural transformations in high-capacity tin (Sn) based alloy electrodes for sodium ion batteries. This work is predicated on the hypothesis that changes in mesoscale morphology and chemical composition caused by sodiation contribute significantly to the irreversible capacity of such alloy electrodes. An experimental program including electrochemical testing, X-ray diffraction characterization of electrode crystal structure, and in operando X-ray tomography will be coupled with mesoscale computational studies of sodium ion battery electrode microstructures. This comprehensive research approach will test the above hypothesis by achieving these research objectives: (1) correlate changes in Sn-based alloy electrode crystal structure with electrochemical performance; (2) correlate multiscale alloy electrode morphology with structural and chemical changes; and (3) clarify the influence of electrode microstructure on the transport-electrochemistry interaction and performance. The research will provide insight into the interactions between microstructure, chemistry, and performance in sodium ion batteries. The combined experimental and computational approach will provide unprecedented details on the chemical and structural evolution of alloy electrodes due to sodiation. The insights gained will facilitate engineering of future sodium ion battery electrodes and will yield methods applicable to an array of electrode materials relevant to other battery chemistries. The proposed X-ray imaging and mesoscale modeling efforts will yield a documented set of 3D microstructural data, which will be disseminated through an open-source platform and will support future research and development.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
迫切需要大大增加电网中可再生能源的整合。这些可再生资源的固有间歇性和弥漫性的性质预示着具有成本效益的大规模储能的发展。这样的存储功能为电网提供了弹性的额外好处,这是减轻自然灾害和其他灾难性事件的影响所需的。越来越需要基于地球丰富和成本效益的材料的电化学能源储能技术。基于钠离子电池和锡(SN)的合金阳极材料是该应用的有前途的技术,需要大容量的能量存储。通过这个基本的研究项目,由于钠基合金中的钠储存以及钠离子电池的性能,化学和结构变化之间建立了更牢固的联系。该研究项目为多学科研究环境中的研究生和本科生的教育和培训做出了贡献。综合教育和外展计划将为研究生,本科和高中生创造机会参与这项研究,并强烈强调增加代表性不足的学生的参与。研究结果将通过讲座和实验室班级在本科和研究生水平的课程中纳入课程。由综合实验,表征和仿真工作产生的开源数据库将导致储能科学的发展。通过促进钠离子电池的未来开发,该项目将有助于有助于社会对具有成本效益的电网储能的需求。这项研究的主要目的是建立全面的知识库,并了解基于钠离子电池的高容量锡(SN)合金电极的化学和结构转化。这项工作是基于以下假设:屈态引起的中尺度形态和化学组成的变化对这种合金电极的不可逆转能力显着贡献。一个实验程序,包括电化学测试,电极晶体结构的X射线衍射表征以及在Operando X射线断层扫描中,将与钠离子电池电极微结构的中尺度计算研究结合使用。这种全面的研究方法将通过实现这些研究目标来检验上述假设:(1)将基于SN的合金电极晶体结构的变化与电化学性能相关联; (2)将多尺寸合金形态形态与结构和化学变化相关联; (3)阐明电极微结构对传输电气化学相互作用和性能的影响。该研究将洞悉微结构,化学和钠离子电池性能之间的相互作用。合并的实验和计算方法将提供有关合金电极的化学和结构演化的前所未有的细节。获得的见解将促进未来的钠离子电池电极的工程,并产生适用于与其他电池化学相关的一系列电极材料的方法。拟议的X射线成像和中尺度建模工作将产生一组有记录的3D微结构数据,这些数据将通过开源平台进行分散,并将支持未来的研究和开发。该奖项反映了NSF的法定任务,并认为通过基金会的知识分子和更广泛的影响来评估Criteria Criteria Criteria。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

George Nelson其他文献

Bronchoalveolar Lavage Plasmacytosis in a Patient with a Plasma Cell Dyscrasia
  • DOI:
    10.1378/chest.95.1.226
  • 发表时间:
    1989-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Phillip Menashe;William Stenson;Gustavo Reynoso;Margaret Keane;Kesav G. Nair;George Nelson
  • 通讯作者:
    George Nelson
Resolution of a fungal mycotic aneurysm after a contaminated steroid injection: a case report
注射受污染的类固醇后真菌性动脉瘤的消退:病例报告
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    George Nelson;O. Fermo;K. Thakur;Elizabeth Felton;J. Bang;L. Wilson;S. Rhee;R. Llinas;K. Johnson;D. Sullivan
  • 通讯作者:
    D. Sullivan
The yin‐yang driving urinary tract infection and how proteomics can enhance research, diagnostics, and treatment
阴阳驱动尿路感染以及蛋白质组学如何加强研究、诊断和治疗
  • DOI:
    10.1002/prca.201500018
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. A. Floyd;A. Meyer;George Nelson;M. Hadjifrangiskou
  • 通讯作者:
    M. Hadjifrangiskou
Pilot Study of De-Implementation of Empiric Vancomycin Use in Surgical Inpatients
  • DOI:
    10.1016/j.jamcollsurg.2019.08.700
  • 发表时间:
    2019-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Leah Chisholm;Jennifer Robles;Matthew Marshall;George Nelson;Daniel Barocas
  • 通讯作者:
    Daniel Barocas
Forbearance in leadership: Opportunities and risks involved in cutting followers some slack
  • DOI:
    10.1016/j.leaqua.2004.09.011
  • 发表时间:
    2005-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    George Nelson;John Dyck
  • 通讯作者:
    John Dyck

George Nelson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('George Nelson', 18)}}的其他基金

Mini-Symposium: Multiphysics Coupling in Energy Storage, Houston, TX, November 11 - 19, 2015
小型研讨会:储能中的多物理场耦合,德克萨斯州休斯顿,2015 年 11 月 11 日至 19 日
  • 批准号:
    1550512
  • 财政年份:
    2015
  • 资助金额:
    $ 23.29万
  • 项目类别:
    Standard Grant
CAREER: In Situ Observation of Coupled Transport and Degradation in Battery Electrodes
职业:原位观察电池电极的耦合传输和降解
  • 批准号:
    1454437
  • 财政年份:
    2015
  • 资助金额:
    $ 23.29万
  • 项目类别:
    Standard Grant
Collaborative Research: Mesoscale Investigation of Microstructure-Transport Interaction of High-Capacity Electrodes for Energy Storage
合作研究:用于储能的高容量电极的微结构-输运相互作用的介观研究
  • 批准号:
    1438683
  • 财政年份:
    2014
  • 资助金额:
    $ 23.29万
  • 项目类别:
    Standard Grant
North Cascades and Olympic Science Partnership
北喀斯喀特和奥林匹克科学合作伙伴关系
  • 批准号:
    0315060
  • 财政年份:
    2003
  • 资助金额:
    $ 23.29万
  • 项目类别:
    Cooperative Agreement
Technology Education Research Conference
技术教育研究会议
  • 批准号:
    0090761
  • 财政年份:
    2000
  • 资助金额:
    $ 23.29万
  • 项目类别:
    Standard Grant
A Proposal to Develop a Coordinated Set of Tools for Science Education Reform and Foster their Effective Use
开发一套协调的科学教育改革工具并促进其有效使用的建议
  • 批准号:
    9618093
  • 财政年份:
    1997
  • 资助金额:
    $ 23.29万
  • 项目类别:
    Continuing Grant
PROJECT 2061: Education for a Changing Future
项目 2061:改变未来的教育
  • 批准号:
    9350003
  • 财政年份:
    1993
  • 资助金额:
    $ 23.29万
  • 项目类别:
    Continuing Grant
Fy 81 Science Faculty Professional Development Program
81 财年理学院专业发展计划
  • 批准号:
    8165039
  • 财政年份:
    1981
  • 资助金额:
    $ 23.29万
  • 项目类别:
    Standard Grant

相似国自然基金

钛基骨植入物表面电沉积镁氢涂层及其促成骨性能研究
  • 批准号:
    52371195
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
CLMP介导Connexin45-β-catenin复合体对先天性短肠综合征的致病机制研究
  • 批准号:
    82370525
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
人工局域表面等离激元高灵敏传感及其系统小型化的关键技术研究
  • 批准号:
    62371132
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
优先流对中俄原油管道沿线多年冻土水热稳定性的影响机制研究
  • 批准号:
    42301138
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
用于稳定锌负极的界面层/电解液双向调控研究
  • 批准号:
    52302289
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348998
  • 财政年份:
    2025
  • 资助金额:
    $ 23.29万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348999
  • 财政年份:
    2025
  • 资助金额:
    $ 23.29万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
  • 批准号:
    2313120
  • 财政年份:
    2024
  • 资助金额:
    $ 23.29万
  • 项目类别:
    Standard Grant
NSF Engines Development Award: Utilizing space research, development and manufacturing to improve the human condition (OH)
NSF 发动机发展奖:利用太空研究、开发和制造来改善人类状况(OH)
  • 批准号:
    2314750
  • 财政年份:
    2024
  • 资助金额:
    $ 23.29万
  • 项目类别:
    Cooperative Agreement
Doctoral Dissertation Research: How New Legal Doctrine Shapes Human-Environment Relations
博士论文研究:新法律学说如何塑造人类与环境的关系
  • 批准号:
    2315219
  • 财政年份:
    2024
  • 资助金额:
    $ 23.29万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了