CAREER: Control Design for Dynamical Network Flows with Applications to Transportation

职业:动态网络流的控制设计及其在交通运输中的应用

基本信息

  • 批准号:
    1454729
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-02-01 至 2021-01-31
  • 项目状态:
    已结题

项目摘要

As our society is becoming more dependent on critical infrastructure networks such as transportation, communication, water, power, and gas, their efficient and resilient operation is becoming ever more important. Hence, one of the engineering grand challenges identified by the National Academy of Engineering is to restore and improve urban infrastructure systems. However, as recent evaluations by the American Society of Civil Engineers show, the state of our infrastructure systems continues to be substandard, and will likely remain so without massive investments. With significant growth in demand projected, a future infrastructure system that maintains the status quo will not function even at today's current, often inadequate, levels. It is increasingly being realized that leveraging sensing, actuation, and information technologies can achieve substantial improvements in the performance of these systems. These cyber technologies have the potential to endow our infrastructure networks with the capability to dynamically respond to changes in demand, supply, and even physical properties under disruptions. The existing approaches to control of infrastructure networks, however, are inadequate to realize the potential of this capability. This is because they are either heuristic with no formal performance guarantees; or they adopt static abstractions, and hence are useful only for long term planning; or the dynamical frameworks are used only for simulation and analysis purposes with little or no consideration for control design. The project will develop an integrated research and education program on rigorous control design for intelligent infrastructure networks, with a special emphasis on transportation. Collaborations with local transportation and planning agencies will facilitate rapid transition from research to practice. The outreach activities include development of an interactive traffic simulator, which would also serve as an experiment test bed to model dynamic driver behavior; and interactive network interdiction games to demonstrate the concepts of cascading failures and network robustness to general public. The education activities include development of new courses on analysis, control and estimation of infrastructure networks. Research opportunities will be expanded for undergraduates to implement control algorithms on professional transportation software to generate case studies, which will be used for our interactions with transportation agencies. Existing programs at the University of Southern California will be utilized to integrate inclusive teaching practices into educational activities in order to address retention of women, underrepresented and minority students.Network flow is a natural modeling paradigm for several infrastructure networks. The current state-of-the-art in theoretical network flow research primarily consists of algorithms for fast computation of maximum network flow capacity, or optimal flow distribution with respect to some performance metrics; and numerical analysis of dynamical network flows with cascade effects under fixed routing policies. The intellectual merits of the proposed research are: (i) a dynamical network flow framework that models coupling between dynamics of flow and jumps in network topology, e.g., due to cascading failures, as well as facilitates control design; (ii) new advancements in analysis for nonlinear dynamical systems using differential analysis and contraction principles, and applying them for analysis and control synthesis under proposed dynamical network flow; (iii) a computational framework for quantifying margins of resilience in terms of the disturbance generation process, network topology, and cascade dynamics; (iv) application of proposed tools to transportation through dynamic signal control, and inclusion of resilience metric in network design. The margin of resilience computations will identify canonical network flow concepts, besides the classical notion of cuts, as key indicators of network performance from efficiency and resilience perspective, under control and dynamical considerations. Beyond its immediate emphasis on dynamical network flows, the project aims to develop elements of robust control theory for networked dynamical systems.
随着我们的社会越来越依赖交通、通信、水、电、气等关键基础设施网络,它们的高效、弹性运行变得越来越重要。因此,国家工程院确定的工程重大挑战之一是恢复和改善城市基础设施系统。然而,正如美国土木工程师协会最近的评估所显示的,我们的基础设施系统的状态仍然是不合格的,如果没有大规模的投资,这种状况很可能会持续下去。由于预计需求将大幅增长,未来维持现状的基础设施系统即使在目前往往不足的水平上也无法发挥作用。越来越多的人认识到,利用传感、驱动和信息技术可以在这些系统的性能上取得实质性的改进。这些网络技术有可能赋予我们的基础设施网络动态响应需求、供应甚至物理属性变化的能力。然而,现有的控制基础设施网络的方法不足以实现这种能力的潜力。这是因为它们要么是启发式的,没有正式的性能保证;或者它们采用静态抽象,因此只对长期规划有用;或者动态框架仅用于仿真和分析目的,很少或根本不考虑控制设计。该项目将为智能基础设施网络制定严格控制设计的综合研究和教育计划,特别强调交通运输。与当地交通和规划机构的合作将促进从研究到实践的快速过渡。外展活动包括开发交互式交通模拟器,该模拟器也将作为模拟动态驾驶员行为的实验测试平台;互动网络拦截游戏,向公众展示级联故障和网络鲁棒性的概念。教育活动包括编制关于分析、控制和估计基础设施网络的新课程。我们将扩大本科生的研究机会,让他们在专业交通软件上实施控制算法,以生成案例研究,这些案例研究将用于我们与交通机构的互动。南加州大学现有的项目将把包容性教学实践融入教育活动,以解决女性、代表性不足和少数民族学生的保留问题。网络流是几种基础设施网络的自然建模范式。目前理论网络流研究的最新进展主要包括快速计算最大网络流量容量的算法,或相对于某些性能指标的最优流量分布;并对固定路由策略下具有级联效应的动态网络流进行了数值分析。提出的研究的智力优点是:(i)一个动态网络流框架,该框架可以模拟流的动力学和网络拓扑中的跳跃之间的耦合,例如由于级联故障,并且便于控制设计;(2)利用微分分析和收缩原理分析非线性动力系统的新进展,并将其应用于动态网络流下的分析和控制综合;(iii)根据扰动产生过程、网络拓扑结构和级联动力学来量化弹性边际的计算框架;(iv)通过动态信号控制将建议的工具应用于交通运输,并在网络设计中纳入弹性指标。弹性计算的边际将从控制和动态考虑的角度,从效率和弹性的角度,识别除经典切割概念之外的规范网络流概念,作为网络性能的关键指标。除了直接强调动态网络流之外,该项目旨在为网络动态系统开发鲁棒控制理论的要素。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ketan Savla其他文献

A decentralized feedback approach for flow control in highway traffic networks
  • DOI:
    10.1016/j.automatica.2022.110661
  • 发表时间:
    2022-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Saeid Jafari;Ketan Savla
  • 通讯作者:
    Ketan Savla
Optimal coordinated platoon lane change in highways with mixed traffic
混合交通高速公路中最优的协调车队换道
  • DOI:
    10.1016/j.vehcom.2025.100924
  • 发表时间:
    2025-08-01
  • 期刊:
  • 影响因子:
    6.500
  • 作者:
    Fernando V. Monteiro;Ketan Savla;Petros Ioannou
  • 通讯作者:
    Petros Ioannou

Ketan Savla的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ketan Savla', 18)}}的其他基金

From Microscopic to Macroscopic Traffic Flow: A Queuing Theoretic Approach
从微观到宏观交通流:排队理论方法
  • 批准号:
    1636377
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

Cortical control of internal state in the insular cortex-claustrum region
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    25 万元
  • 项目类别:

相似海外基金

CAREER: Physics-Infused Reduced-Order Modeling for Control Co-Design of Morphing Aerial Autonomous Systems
职业:用于变形空中自主系统控制协同设计的物理降阶建模
  • 批准号:
    2340266
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Predictive design and control of the electrode/electrolyte interface for improved electrocatalysis
职业:电极/电解质界面的预测设计和控制以改进电催化
  • 批准号:
    2338917
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Learning and Leveraging Conventions in the Design of an Adaptive Haptic Shared Control for Steering a Semi-Automated Vehicle
职业:学习和利用设计用于驾驶半自动车辆的自适应触觉共享控制的惯例
  • 批准号:
    2238268
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Towards rational design and control of oxygen migration in oxide thin films for nano-ionic technologies
职业:针对纳米离子技术的氧化物薄膜中氧迁移的合理设计和控制
  • 批准号:
    2144383
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Design, control, and understanding of lateral textures in strongly correlated heterostructures
职业:设计、控制和理解强相关异质结构中的横向纹理
  • 批准号:
    2145080
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Bio-inspired Multi-joint Design and Control for Efficient and Lightweight Wearable Robots
职业:高效、轻型可穿戴机器人的仿生多关节设计和控制
  • 批准号:
    2046287
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Design, Optimization, and Feedback Control of Noncontact Magnetic Manipulators
职业:非接触式磁力机械手的设计、优化和反馈控制
  • 批准号:
    1941944
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Rational Design of Defect-Ordered Architectures in Oxygen-Deficient Perovskites to Control the Oxygen-Evolution Activity
职业:合理设计缺氧钙钛矿中的缺陷有序结构以控制析氧活性
  • 批准号:
    1943085
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Control, Optimization, and Market Design for Efficient and Reliable Integration of Renewable Energy Sources in Electric Power Systems
职业:电力系统中可再生能源高效可靠集成的控制、优化和市场设计
  • 批准号:
    1752362
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Correct-By-Design Control of Traffic Flow Networks
职业:交通流网络的正确设计控制
  • 批准号:
    1749357
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了