ABI Innovation: Quantifying, simulating, and visualizing the tree growth and its antecedent endogenous and climatic predictors

ABI 创新:量化、模拟和可视化树木生长及其先前的内源和气候预测因子

基本信息

  • 批准号:
    1458867
  • 负责人:
  • 金额:
    $ 81.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Past environmental conditions are likely to be important for predicting current processes such as ecosystem productivity and tree growth. Moreover, past environmental conditions may interact with past tree growth patterns to affect current tree growth. Understanding the role of past conditions for predicting current and future growth responses of trees is expected to be important for predicting how trees, forests, and the terrestrial biosphere in general, may be impacted by future environmental changes, such as those anticipated to occur in tandem with climate change. However, methods for inferring the importance of past conditions for current processes (e.g., tree growth) are not well developed. Thus, this study develops statistical and computing methods for quantifying the past (antecedent) factors governing tree growth, with specific focus on identifying the time scales over which past climate conditions and past tree growth patterns affect current tree growth. This study draws upon large amounts of existing data on annual tree growth ("tree rings") available on-line for multiple tree species across the southwestern US, and it will contribute additional data via a focused field study that will sample several species in this region. The project will train at least three graduate students from diverse disciplines (ecology/biology, modeling/statistics, computing/software development) and several undergraduate students. Results and data generated by this study will be used to develop education modules related to new undergraduate coursework and short courses aimed at training early career scientists. Environmental conditions averaged over past days, weeks, months, seasons, or years are important predictors of plant and ecosystem productivity. For example, tree-ring studies indicate that tree growth is affected by antecedent exogenous (e.g., past climate) and endogenous (e.g., past ring widths) factors, but existing analysis methods do not explicitly evaluate the role of each factor.To address this need, this study will (1) develop a stochastic antecedent model (SAM) for quantifying antecedent climatic and endogenous conditions and their influence on tree growth, (2) apply the SAM to estimate the time-scales over which antecedent factors affect tree growth for multiple species across multiple sites in the Southwest, (3) identify potential physiological mechanisms underlying the antecedent effects on tree growth, and (4) develop software for more general applications of SAM and for simulating and visualizing tree growth. This study combines large datasets, field studies, literature data, Bayesian synthesis, and an individual-based model (IBM) of tree growth and physiology. This study is expected to lend insight into the role trees play as integrators of past environments and physiological states, and the SAM approach should improve our ability to forecast plant and ecosystem responses to climate change, disturbances, or other perturbations. Importantly, the general SAM framework for quantifying the temporal properties of the antecedent conditions and their effects on the process of interest will be broadly applicable to a wide range of fields. To address the aforementioned research objectives, this project will provide interdisciplinary training for a post-doc, 3 graduate students (ecology, statistics, computer science), and multiple undergraduates. Products from this study will be incorporated into a new undergraduate seminar at ASU, a Bayesian modeling workshop organized for annual ecology meetings (ESA), and a 2-week summer course in Bayesian methods aimed at early career and senior ecological scientists. Two software (R) packages will be developed, one for SAM and one for the IBM. Data generated from this study will be made publically and globally available via data repositories. Results from the project can be found at: www.ogle.lab.asu.edu.
过去的环境条件可能是重要的预测当前的过程,如生态系统的生产力和树木的生长。此外,过去的环境条件可能与过去的树木生长模式相互作用,影响当前的树木生长。了解过去的条件对预测树木当前和未来的生长反应的作用,对于预测树木、森林和一般陆地生物圈如何受到未来环境变化的影响,例如预计将与气候变化同时发生的环境变化,预计是重要的。然而,用于推断过去条件对当前过程的重要性的方法(例如,树木的生长并不发达。因此,本研究开发的统计和计算方法,用于量化过去(先行)的树木生长的因素,具体重点是确定过去的气候条件和过去的树木生长模式影响当前的树木生长的时间尺度。这项研究利用了大量现有的数据,每年树木生长(“树轮”)在线提供多个树种在美国西南部,它将通过一个重点领域的研究,将在该地区的几个物种的样本提供额外的数据。该项目将培训至少三名来自不同学科(生态学/生物学,建模/统计学,计算/软件开发)的研究生和几名本科生。本研究产生的结果和数据将用于开发与新的本科课程和旨在培训早期职业科学家的短期课程相关的教育模块。过去几天、几周、几个月、几个季节或几年的平均环境条件是植物和生态系统生产力的重要预测因子。例如,树木年轮研究表明,树木的生长受到前因外源(例如,过去的气候)和内源性(例如,为了解决这一问题,本研究将(1)建立一个随机先行模型(SAM),用于量化先行气候和内源条件及其对树木生长的影响,(2)应用SAM来估计西南部多个地点的多个物种的前因因素影响树木生长的时间尺度,(3)确定潜在的生理机制,这些机制是树木生长的前因效应的基础;(4)开发软件,用于SAM的更一般的应用以及模拟和可视化树木生长。这项研究结合了大型数据集,实地研究,文献数据,贝叶斯综合,以及基于个体的树木生长和生理模型(IBM)。这项研究有望深入了解树木作为过去环境和生理状态的整合者所发挥的作用,SAM方法应提高我们预测植物和生态系统对气候变化、干扰或其他扰动的反应的能力。重要的是,一般SAM框架量化的时间属性的前提条件和它们对感兴趣的过程的影响将广泛适用于广泛的领域。为了实现上述研究目标,本项目将为一名博士后,3名研究生(生态学,统计学,计算机科学)和多名本科生提供跨学科培训。这项研究的产品将被纳入亚利桑那州立大学的一个新的本科生研讨会,为年度生态会议(ESA)组织的贝叶斯建模研讨会,以及针对早期职业和高级生态科学家的为期2周的贝叶斯方法夏季课程。将开发两个软件包,一个用于SAM,一个用于IBM。本研究生成的数据将通过数据存储库公开并在全球范围内提供。该项目的成果可在以下网址查阅:www.ogle.lab.asu.edu。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kiona Ogle其他文献

Precipitation pulses and carbon fluxes in semiarid and arid ecosystems
  • DOI:
    10.1007/s00442-004-1682-4
  • 发表时间:
    2004-08-27
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Travis E. Huxman;Keirith A. Snyder;David Tissue;A. Joshua Leffler;Kiona Ogle;William T. Pockman;Darren R. Sandquist;Daniel L. Potts;Susan Schwinning
  • 通讯作者:
    Susan Schwinning
Combining and comparing multiple serial dilution assays of particles in solution: application to brucellosis in elk of the Greater Yellowstone Ecosystem
  • DOI:
    10.1007/s10651-014-0292-5
  • 发表时间:
    2014-05-14
  • 期刊:
  • 影响因子:
    1.800
  • 作者:
    Jarrett J. Barber;Pritam Gupta;William Edwards;Kiona Ogle;Lance A. Waller
  • 通讯作者:
    Lance A. Waller
Plant responses to precipitation in desert ecosystems: integrating functional types, pulses, thresholds, and delays
  • DOI:
    10.1007/s00442-004-1507-5
  • 发表时间:
    2004-03-06
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Kiona Ogle;James F. Reynolds
  • 通讯作者:
    James F. Reynolds

Kiona Ogle的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kiona Ogle', 18)}}的其他基金

Collaborative Research: MRA: Climate legacies and timescales of influence on carbon cycle processes in drylands
合作研究:MRA:气候遗产和对旱地碳循环过程影响的时间尺度
  • 批准号:
    2213599
  • 财政年份:
    2022
  • 资助金额:
    $ 81.87万
  • 项目类别:
    Continuing Grant
NRT-HDR: A team-based training paradigm integrating informatics and ecology
NRT-HDR:融合信息学和生态学的团队训练范式
  • 批准号:
    1829075
  • 财政年份:
    2018
  • 资助金额:
    $ 81.87万
  • 项目类别:
    Standard Grant
DISSERTATION RESEARCH: Role of non-structural carbohydrate dynamics in legacy effects of drought in Southwestern forests
论文研究:非结构碳水化合物动态在西南森林干旱遗留影响中的作用
  • 批准号:
    1702017
  • 财政年份:
    2017
  • 资助金额:
    $ 81.87万
  • 项目类别:
    Standard Grant
RAPID: Leveraging the 2015-2016 El Nino to evaluate drought legacy effects on tree growth responses to rare wet events
RAPID:利用 2015-2016 年厄尔尼诺现象评估干旱遗留影响对树木生长对罕见潮湿事件的反应
  • 批准号:
    1643245
  • 财政年份:
    2016
  • 资助金额:
    $ 81.87万
  • 项目类别:
    Standard Grant
Collaborative Research: Extreme Events and Ecological Acclimation: Scaling from Cells to Ecosystems
合作研究:极端事件和生态适应:从细胞扩展到生态系统
  • 批准号:
    1602131
  • 财政年份:
    2015
  • 资助金额:
    $ 81.87万
  • 项目类别:
    Standard Grant
Collaborative Research: Extreme Events and Ecological Acclimation: Scaling from Cells to Ecosystems
合作研究:极端事件和生态适应:从细胞扩展到生态系统
  • 批准号:
    1340300
  • 财政年份:
    2014
  • 资助金额:
    $ 81.87万
  • 项目类别:
    Standard Grant
A Theoretical and Computational Framework for Linking Tree form and Function to Forest Diversity and Productivity
将树木形态和功能与森林多样性和生产力联系起来的理论和计算框架
  • 批准号:
    1133366
  • 财政年份:
    2010
  • 资助金额:
    $ 81.87万
  • 项目类别:
    Continuing Grant
A Theoretical and Computational Framework for Linking Tree form and Function to Forest Diversity and Productivity
将树木形态和功能与森林多样性和生产力联系起来的理论和计算框架
  • 批准号:
    0850361
  • 财政年份:
    2009
  • 资助金额:
    $ 81.87万
  • 项目类别:
    Continuing Grant
Bioinformatics Starter Grant: Species-Specific Traits Controlling Forest and Woodland Dynamics Revealed by Bayesian Melding of Diverse Data and Process Models
生物信息学入门资助:通过贝叶斯融合不同数据和过程模型揭示控制森林和林地动态的物种特异性特征
  • 批准号:
    0630119
  • 财政年份:
    2006
  • 资助金额:
    $ 81.87万
  • 项目类别:
    Standard Grant
Postdoctoral Research Fellowship in Interdisciplinary Informatics for FY 2003
2003财年跨学科信息学博士后研究奖学金
  • 批准号:
    0305709
  • 财政年份:
    2003
  • 资助金额:
    $ 81.87万
  • 项目类别:
    Fellowship Award

相似海外基金

Collaborative Research: ABI Innovation: Quantifying biogeographic history: a novel model-based approach to integrating data from genes, fossils, specimens, and environments
合作研究:ABI 创新:量化生物地理历史:一种基于模型的新颖方法来整合来自基因、化石、标本和环境的数据
  • 批准号:
    1759729
  • 财政年份:
    2018
  • 资助金额:
    $ 81.87万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Quantifying biogeographic history: a novel model -based approach to integrating data from genes, fossils, specimens, and environments
合作研究:ABI 创新:量化生物地理历史:一种基于模型的新颖方法来整合来自基因、化石、标本和环境的数据
  • 批准号:
    1759708
  • 财政年份:
    2018
  • 资助金额:
    $ 81.87万
  • 项目类别:
    Standard Grant
CAREER: Quantifying diffusion and dynamics on healthcare, innovation and communication networks
职业:量化医疗保健、创新和通信网络的扩散和动态
  • 批准号:
    1937978
  • 财政年份:
    2018
  • 资助金额:
    $ 81.87万
  • 项目类别:
    Continuing Grant
Collaborative Research: ABI Innovation: Quantifying biogeographic history: a novel model-based approach to integrating data from genes, fossils, specimens, and environments
合作研究:ABI 创新:量化生物地理历史:一种基于模型的新颖方法来整合来自基因、化石、标本和环境的数据
  • 批准号:
    1759759
  • 财政年份:
    2018
  • 资助金额:
    $ 81.87万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: RUI: Quantifying biogeographic history: a novel model-based approach to integrating data from genes, fossils, specimens, and environments
合作研究:ABI 创新:RUI:量化生物地理历史:一种基于模型的新颖方法来整合来自基因、化石、标本和环境的数据
  • 批准号:
    1759797
  • 财政年份:
    2018
  • 资助金额:
    $ 81.87万
  • 项目类别:
    Standard Grant
Workshop on Quantifying the Impacts of Government Investment on Innovation
量化政府投资对创新的影响研讨会
  • 批准号:
    1551715
  • 财政年份:
    2015
  • 资助金额:
    $ 81.87万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Quantifying and Exploiting the Structure of Phylogenetic Tree Space Through Network Analyses
合作研究:ABI创新:通过网络分析量化和利用系统发育树空间的结构
  • 批准号:
    1262571
  • 财政年份:
    2013
  • 资助金额:
    $ 81.87万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Quantifying and Exploiting the Structure of Phylogenetic Tree Space Through Network Analyses
合作研究:ABI创新:通过网络分析量化和利用系统发育树空间的结构
  • 批准号:
    1262476
  • 财政年份:
    2013
  • 资助金额:
    $ 81.87万
  • 项目类别:
    Standard Grant
CAREER: Quantifying diffusion and dynamics on healthcare, innovation and communication networks
职业:量化医疗保健、创新和通信网络的扩散和动态
  • 批准号:
    1149662
  • 财政年份:
    2012
  • 资助金额:
    $ 81.87万
  • 项目类别:
    Continuing Grant
Quantifying The Resilience of Industry Innovation Ecosystems: The Impact of Manufacturing Offshore on Firm Technology Trajectories and the Institutional Locus of Innovation
量化行业创新生态系统的弹性:离岸制造对企业技术轨迹和创新制度轨迹的影响
  • 批准号:
    0830354
  • 财政年份:
    2008
  • 资助金额:
    $ 81.87万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了