A Theoretical and Computational Framework for Linking Tree form and Function to Forest Diversity and Productivity
将树木形态和功能与森林多样性和生产力联系起来的理论和计算框架
基本信息
- 批准号:1133366
- 负责人:
- 金额:$ 48.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-12-15 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The University of Wyoming is awarded a grant to develop a scaling framework for understanding forest diversity and productivity. This study addresses three questions that are paramount to developing this framework. (1) How do traits related to tree form (e.g., allometries, morphology) and function (e.g., physiology, growth, allocation, survival) vary between species, and how do evolutionary versus environmental drivers affect trait variability?(2) Is a species-specific representation of form and function necessary to accurately describe community and ecosystem properties (e.g., diversity, succession, productivity, carbon cycling)? (3) How do we develop a general scaling framework for predicting large-scale forest dynamics that includes species-specific trait variability and key physiological mechanisms? Towards addressing these questions, this study develops and applies data-model integration methodologies, including: (i) dynamic process models that link tree form and function, incorporate key plant functional traits, and are applicable to broad spatial and temporal scales; (ii) new meta-analysis methods for analyzing vast amounts of literature information on species-specific traits that incorporate phylogenetic relationships and overcome limitations common to ³classical² meta-analytic approaches; and(iii) rigorous statistical and computational methods for informing the process model with large and disparate data sources (i.e., literature, forest inventory, and tree-ring width databases). This highly integrative approach will provide a major step towards building and testing a general scaling framework. The broader impacts of this work include multiple training opportunities in data-model integration methods for undergraduates through post-graduate scientists. Methods developed in this study will be partly disseminated through an annual, daylong workshop on Bayesian analysis in ecology for the Ecological Society of America annual meetings. Training in data-model integration, and specifically Bayesian methods, is lacking in many university curriculums and two new graduate-level courses in Bayesian data analysis and advanced/computational Bayesian will be further developed and integrated, providing a modern curriculum in applied statistical modeling and computing at the University of Wyoming (UW). Training in modern statistical modeling will offer a unique educational opportunity for those PhD students in UW¹s new and vibrant graduate Program in Ecology. This study will also create independent research opportunities for UW undergraduates, and it will provide one post-doctoral and two PhD students with unique interdisciplinary teaching, mentoring, and research training in ecology, statistics, mathematics, and computational science.
怀俄明大学获得了一笔赠款,用于开发一个规模框架,以了解森林多样性和生产力。本研究解决了开发该框架的三个最重要的问题。(1)与树形相关的性状(如异速生长、形态)和功能(如生理、生长、分配、生存)在不同物种之间如何变化,进化和环境驱动因素如何影响性状变异?(2)准确描述群落和生态系统特性(如多样性、演替、生产力、碳循环)是否需要特定物种的形式和功能表征?(3)如何建立一个包括物种特异性性状变异和关键生理机制在内的大尺度森林动态预测的通用尺度框架?为了解决这些问题,本研究开发并应用了数据模型集成方法,包括:(1)将树的形态和功能联系起来,结合植物的关键功能性状,并适用于广泛的时空尺度的动态过程模型;(ii)新的元分析方法,用于分析包含系统发育关系的物种特异性特征的大量文献信息,并克服了经典元分析方法的共同局限性;(iii)采用严格的统计和计算方法,为过程模型提供大量不同的数据源(即文献、森林清查和树木年轮宽度数据库)。这种高度集成的方法将为构建和测试通用扩展框架迈出重要的一步。这项工作的广泛影响包括本科生到研究生科学家在数据模型集成方法方面的多个培训机会。本研究中开发的方法将通过美国生态学会年会的为期一天的生态学贝叶斯分析年度研讨会部分传播。许多大学课程缺乏数据模型集成,特别是贝叶斯方法的培训,因此将进一步开发和整合贝叶斯数据分析和高级/计算贝叶斯两门新的研究生课程,为怀俄明大学(UW)提供应用统计建模和计算的现代课程。现代统计建模的培训将为那些在华盛顿大学新的和充满活力的生态学研究生课程的博士生提供一个独特的教育机会。该研究还将为UW本科生创造独立研究的机会,并将为一名博士后和两名博士提供独特的跨学科教学,指导和研究培训,包括生态学,统计学,数学和计算科学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kiona Ogle其他文献
Precipitation pulses and carbon fluxes in semiarid and arid ecosystems
- DOI:
10.1007/s00442-004-1682-4 - 发表时间:
2004-08-27 - 期刊:
- 影响因子:2.300
- 作者:
Travis E. Huxman;Keirith A. Snyder;David Tissue;A. Joshua Leffler;Kiona Ogle;William T. Pockman;Darren R. Sandquist;Daniel L. Potts;Susan Schwinning - 通讯作者:
Susan Schwinning
Combining and comparing multiple serial dilution assays of particles in solution: application to brucellosis in elk of the Greater Yellowstone Ecosystem
- DOI:
10.1007/s10651-014-0292-5 - 发表时间:
2014-05-14 - 期刊:
- 影响因子:1.800
- 作者:
Jarrett J. Barber;Pritam Gupta;William Edwards;Kiona Ogle;Lance A. Waller - 通讯作者:
Lance A. Waller
Plant responses to precipitation in desert ecosystems: integrating functional types, pulses, thresholds, and delays
- DOI:
10.1007/s00442-004-1507-5 - 发表时间:
2004-03-06 - 期刊:
- 影响因子:2.300
- 作者:
Kiona Ogle;James F. Reynolds - 通讯作者:
James F. Reynolds
Kiona Ogle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kiona Ogle', 18)}}的其他基金
Collaborative Research: MRA: Climate legacies and timescales of influence on carbon cycle processes in drylands
合作研究:MRA:气候遗产和对旱地碳循环过程影响的时间尺度
- 批准号:
2213599 - 财政年份:2022
- 资助金额:
$ 48.73万 - 项目类别:
Continuing Grant
NRT-HDR: A team-based training paradigm integrating informatics and ecology
NRT-HDR:融合信息学和生态学的团队训练范式
- 批准号:
1829075 - 财政年份:2018
- 资助金额:
$ 48.73万 - 项目类别:
Standard Grant
DISSERTATION RESEARCH: Role of non-structural carbohydrate dynamics in legacy effects of drought in Southwestern forests
论文研究:非结构碳水化合物动态在西南森林干旱遗留影响中的作用
- 批准号:
1702017 - 财政年份:2017
- 资助金额:
$ 48.73万 - 项目类别:
Standard Grant
RAPID: Leveraging the 2015-2016 El Nino to evaluate drought legacy effects on tree growth responses to rare wet events
RAPID:利用 2015-2016 年厄尔尼诺现象评估干旱遗留影响对树木生长对罕见潮湿事件的反应
- 批准号:
1643245 - 财政年份:2016
- 资助金额:
$ 48.73万 - 项目类别:
Standard Grant
Collaborative Research: Extreme Events and Ecological Acclimation: Scaling from Cells to Ecosystems
合作研究:极端事件和生态适应:从细胞扩展到生态系统
- 批准号:
1602131 - 财政年份:2015
- 资助金额:
$ 48.73万 - 项目类别:
Standard Grant
ABI Innovation: Quantifying, simulating, and visualizing the tree growth and its antecedent endogenous and climatic predictors
ABI 创新:量化、模拟和可视化树木生长及其先前的内源和气候预测因子
- 批准号:
1458867 - 财政年份:2015
- 资助金额:
$ 48.73万 - 项目类别:
Continuing Grant
Collaborative Research: Extreme Events and Ecological Acclimation: Scaling from Cells to Ecosystems
合作研究:极端事件和生态适应:从细胞扩展到生态系统
- 批准号:
1340300 - 财政年份:2014
- 资助金额:
$ 48.73万 - 项目类别:
Standard Grant
A Theoretical and Computational Framework for Linking Tree form and Function to Forest Diversity and Productivity
将树木形态和功能与森林多样性和生产力联系起来的理论和计算框架
- 批准号:
0850361 - 财政年份:2009
- 资助金额:
$ 48.73万 - 项目类别:
Continuing Grant
Bioinformatics Starter Grant: Species-Specific Traits Controlling Forest and Woodland Dynamics Revealed by Bayesian Melding of Diverse Data and Process Models
生物信息学入门资助:通过贝叶斯融合不同数据和过程模型揭示控制森林和林地动态的物种特异性特征
- 批准号:
0630119 - 财政年份:2006
- 资助金额:
$ 48.73万 - 项目类别:
Standard Grant
Postdoctoral Research Fellowship in Interdisciplinary Informatics for FY 2003
2003财年跨学科信息学博士后研究奖学金
- 批准号:
0305709 - 财政年份:2003
- 资助金额:
$ 48.73万 - 项目类别:
Fellowship Award
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CRII: OAC: A Multi-fidelity Computational Framework for Discovering Governing Equations Under Uncertainty
CRII:OAC:用于发现不确定性下控制方程的多保真度计算框架
- 批准号:
2348495 - 财政年份:2024
- 资助金额:
$ 48.73万 - 项目类别:
Standard Grant
A Neural and Computational Framework of the Effort Paradox
努力悖论的神经和计算框架
- 批准号:
EP/Y014561/1 - 财政年份:2024
- 资助金额:
$ 48.73万 - 项目类别:
Research Grant
CAREER: A multi-scale and hierarchical computational framework to model III-nitride devices operating in the near-terahertz regime
职业:多尺度和分层计算框架,用于模拟在近太赫兹区域运行的 III 族氮化物器件
- 批准号:
2237663 - 财政年份:2023
- 资助金额:
$ 48.73万 - 项目类别:
Continuing Grant
Developing an Experimental and Computational Framework for Studying Neural Representations of Tactile Motion on the Hand
开发用于研究手部触觉运动神经表征的实验和计算框架
- 批准号:
10732095 - 财政年份:2023
- 资助金额:
$ 48.73万 - 项目类别:
CRII: OAC: A Computational Framework for Studying Transport Phenomena in Complex Networks: From Biological Towards Sustainable and Resilient Engineering Networks
CRII:OAC:研究复杂网络中传输现象的计算框架:从生物网络到可持续和弹性工程网络
- 批准号:
2349122 - 财政年份:2023
- 资助金额:
$ 48.73万 - 项目类别:
Standard Grant
Alternative protein sources: growing the next generation computational modelling framework
替代蛋白质来源:发展下一代计算模型框架
- 批准号:
2886049 - 财政年份:2023
- 资助金额:
$ 48.73万 - 项目类别:
Studentship
Collaborative Research: Frameworks: A multi-fidelity computational framework for vascular mechanobiology in SimVascular
合作研究:框架:SimVasulous 中血管力学生物学的多保真度计算框架
- 批准号:
2310910 - 财政年份:2023
- 资助金额:
$ 48.73万 - 项目类别:
Standard Grant
A New Computational Framework for Superior Image Reconstruction in Limited Data Quantitative Photoacoustic Tomography
有限数据定量光声断层扫描中卓越图像重建的新计算框架
- 批准号:
2309491 - 财政年份:2023
- 资助金额:
$ 48.73万 - 项目类别:
Standard Grant
CAREER: A Multiscale Computational and Experimental Framework to Elucidate the Biomechanics of Infant Growth
职业生涯:阐明婴儿生长生物力学的多尺度计算和实验框架
- 批准号:
2238859 - 财政年份:2023
- 资助金额:
$ 48.73万 - 项目类别:
Standard Grant
CAREER: Probabilistic Framework for Self-Supervised, Data-Driven Computational Imaging
职业:自我监督、数据驱动的计算成像的概率框架
- 批准号:
2236796 - 财政年份:2023
- 资助金额:
$ 48.73万 - 项目类别:
Continuing Grant