FRG: Collaborative Research: Long-Term Dynamics of Nonlinear Dispersive and Hyperbolic Equations: Deterministic and Probabilistic Methods
FRG:协作研究:非线性色散和双曲方程的长期动力学:确定性和概率方法
基本信息
- 批准号:1463714
- 负责人:
- 金额:$ 28.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project focuses on several problems connected with the long-term dynamics of solutions of partial differential evolution equations. Equations of this type are central to the modeling and simulation of a wide range of phenomena, including water waves, propagation of light, behavior of plasmas, and gravitation. The investigators are senior researchers with experience in different aspects of the study of partial differential equations; their complementary expertise will be brought to bear on four main research directions in the study of solutions of dispersive and hyperbolic equations. The four aspects of nonlinear partial differential equations are all manifestations of the general goal of understanding the long time dynamics of solutions to important nonlinear dispersive and hyperbolic equations. This project is a collective effort of a group of five senior researchers from four institutions with research experience in various areas of partial differential equations. The investigators have been interested in both dispersive and hyperbolic partial differential equations and will collaborate to approach the problems under study from several different directions. The project centers on four main research directions in the study of solutions of dispersive and hyperbolic equations: (1) the analysis of critical semilinear evolutions, with special emphasis on the "soliton resolution conjecture" for extended type II solutions, (2) construction of global solutions of certain quasilinear dispersive models, such as water wave models, plasma models, and crystal optics, (3) stability problems in General Relativity, motivated by the outstanding Kerr nonlinear stability conjecture, and (4) long-term dynamics of solutions corresponding to randomized data. These four aspects of nonlinear partial differential equations are all manifestations of the general goal of understanding the long time dynamics of solutions. While specific major problems are identified for the project, this is a very active field, and it is anticipated that this project will identify and study other important problems during the course of the investigation. The project will also enhance links and collaborations among researchers at leading mathematical centers in the U.S., promoting training through active research involvement of students and postdoctoral researchers. Research resulting from this project will be disseminated widely in advanced graduate courses, survey articles, and monographs.
本项目主要研究与偏微分演化方程解的长期动力学相关的几个问题。这种类型的方程对于各种现象的建模和模拟至关重要,包括水波、光的传播、等离子体的行为和引力。研究人员是在偏微分方程研究的不同方面具有经验的资深研究人员;他们的互补专长将集中在色散方程和双曲方程解研究的四个主要研究方向上。非线性偏微分方程的四个方面都是理解重要的非线性色散方程和双曲方程解的长时间动力学这一总体目标的表现。本项目由来自四个机构的五名资深研究人员共同完成,他们在偏微分方程的各个领域都有研究经验。研究人员对色散偏微分方程和双曲偏微分方程都很感兴趣,并将从几个不同的方向合作解决正在研究的问题。本项目主要研究色散方程和双曲方程解的四个主要研究方向:(1)分析临界半线性演化,重点研究扩展II型解的“孤子分辨率猜想”;(2)构造某些拟线性色散模型(如水波模型、等离子体模型和晶体光学)的全局解;(3)由杰出的Kerr非线性稳定性猜想激发的广义相对论稳定性问题;(4)随机数据对应的解的长期动力学。非线性偏微分方程的这四个方面都是理解解的长时间动力学这一总目标的表现。虽然为该项目确定了具体的主要问题,但这是一个非常活跃的领域,预计该项目将在调查过程中确定和研究其他重要问题。该项目还将加强美国主要数学中心研究人员之间的联系和合作,通过学生和博士后研究人员的积极研究参与促进培训。本计画的研究成果将广泛散布在高级研究生课程、调查文章和专著中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrea Nahmod其他文献
Andrea Nahmod的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrea Nahmod', 18)}}的其他基金
New Challenges in the Study of Propagation of Randomness for Nonlinear Evolution Equations
非线性演化方程随机传播研究的新挑战
- 批准号:
2400036 - 财政年份:2024
- 资助金额:
$ 28.5万 - 项目类别:
Standard Grant
Propagation of Randomness in Nonlinear Evolution Equations
非线性演化方程中随机性的传播
- 批准号:
2101381 - 财政年份:2021
- 资助金额:
$ 28.5万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Challenges in the Derivation and Dynamics of Quantum Systems
FRG:协作研究:量子系统推导和动力学的新挑战
- 批准号:
2052740 - 财政年份:2021
- 资助金额:
$ 28.5万 - 项目类别:
Standard Grant
Collaborative Research: Dynamics of Nonlinear Partial Differential Equations: Integrating Deterministic and Probabilistic Methods
合作研究:非线性偏微分方程的动力学:集成确定性和概率方法
- 批准号:
1800852 - 财政年份:2018
- 资助金额:
$ 28.5万 - 项目类别:
Continuing Grant
New Challenges in Nonlinear PDEs.
非线性偏微分方程的新挑战。
- 批准号:
1201443 - 财政年份:2012
- 资助金额:
$ 28.5万 - 项目类别:
Continuing Grant
Nonlinear Fourier Analysis and Partial Differential Equations
非线性傅里叶分析和偏微分方程
- 批准号:
0803160 - 财政年份:2008
- 资助金额:
$ 28.5万 - 项目类别:
Standard Grant
Nonlinear Fourier Analysis And Geometric Dispersive Equations.
非线性傅里叶分析和几何色散方程。
- 批准号:
0503542 - 财政年份:2005
- 资助金额:
$ 28.5万 - 项目类别:
Continuing Grant
Harmonic Analysis and Geometric Partial Differential Equations
调和分析与几何偏微分方程
- 批准号:
0202139 - 财政年份:2002
- 资助金额:
$ 28.5万 - 项目类别:
Continuing Grant
Harmonic Analysis and Partial Differential Equations
调和分析和偏微分方程
- 批准号:
9971159 - 财政年份:1999
- 资助金额:
$ 28.5万 - 项目类别:
Standard Grant
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 28.5万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 28.5万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 28.5万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 28.5万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 28.5万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 28.5万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
$ 28.5万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 28.5万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
$ 28.5万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 28.5万 - 项目类别:
Continuing Grant