Harmonic Analysis and Geometric Partial Differential Equations
调和分析与几何偏微分方程
基本信息
- 批准号:0202139
- 负责人:
- 金额:$ 10.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-07-01 至 2006-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nahmod's research lies in the overlap of harmonic analysis, geometry and partial differential equations. It aims at studying the behavior of nonlinear waves arising in geometry, ferromagnetism and gauge field theories; and that of functions along vector fields whose integral curves lack sufficient curvature. In the first part the focus is in geometric partial differential equations. Of special interest are Schroedinger maps, Wave maps and other gauge field theories such as the Yang Mills equationsin Minkowski space-time. All of these equations model `wave like phenomena'. Their solutions arise as minimizers of the corresponding energy functionals. To conform with natural physical situations, it is of interest to study their existence, uniqueness under minimal regularity assumptions. These are difficult issues because the nonlinearities of these equations involve not just the solutions but also their derivatives. Nahmod will address these questions and plans to show that in the scale invariant set up solutions to the Cauchy initial value problem exist globally provided that the data is sufficiently small when measured relative to the critical regularity norm. She also plans stability issues; e.g. whether such a system remains close to its initial state as time evolves when the data has small energy. From a physical viewpoint the latter models whether such systems are close to equilibrium. The techniques exploit geometric aspects of these equations to extract crucial information -such as special structures in the nonlinearity- which is then used in the analysis. The method combines deep Fourier analysis with gauge theoretic geometric tools. The goal of the second part is the study of the Hilbert transform along vector fields and its associated maximal operator in two dimensions. Their treatment departs from the classical study of singular integrals for in the present situation, the singularity lives on some variety that is changing at each point. Nahmod will investigate how to develop time frequency techniques to study operators under no curvature assumptions. This is the case, for example, in studying differentiability properties of functions along vector fields. Partial differential equations are the mathematical models to the laws governing much of the phenomena in our physical world. The wave equation models the propagation of different kind of waves -such as light waves- in homogeneous media. Nonlinear models of conservative type arise in quantum mechanics while other variants appear for example in the study of vibrating systems and semiconductors. The nonlinear Schroedinger equation arises in various physical contexts in the description of nonlinear waves- such as propagation of a laser beam in a medium whose index of refraction is sensitive to the wave amplitude, water waves at the free surface of an ideal fluid as well as in plasma waves. Some of the interesting questions are those about local and global existence of solutions, uniqueness as well as long time behavior of global solutions. The role of mathematical analysis is to understand the behavior of the solutions to these equations, provide the tools to extract their quantitative and qualitative information and lay the foundations upon which methods to accurately approximate the solutions are developed. Fourier analysis and more generalized adapted frequency decompositions such as time-frequency analysis' consists in decomposing complex objects via `modulated waveforms' into basic building blocks which are localized and easy to understand, and then piecing them back together in a straightforward manner. It works very similarly to a musical score. The modulated waveforms have four attributes: amplitude (loudness), scale (duration), frequency (pitch) and position (instant it is played). The objects could be speech, radar signals, as well as oscillatory expressions arising in optics, AC ousting scattering, wave propagation and other phenomena of nonlocal nature.
Nahmod的研究在于调和分析,几何和偏微分方程的重叠。它的目的是研究几何学、铁磁性和规范场论中产生的非线性波的行为,以及积分曲线缺乏足够曲率的沿着向量场的函数的行为。在第一部分的重点是在几何偏微分方程。特别感兴趣的是薛定谔映射,波映射和其他规范场理论,如闵可夫斯基时空中的杨米尔斯方程。所有这些方程都模拟了“类波现象”。他们的解决方案出现作为相应的能量泛函的极小。为了符合自然物理的实际情况,在极小正则性假设下研究它们的存在性、唯一性是很有意义的。这些都是困难的问题,因为这些方程的非线性不仅涉及解决方案,而且还涉及其衍生物。Nahmod将解决这些问题,并计划表明,在规模不变设置柯西初值问题的解决方案存在全球性的数据是足够小的时候,测量相对于临界正则性规范。她还计划稳定性问题;例如,当数据具有小能量时,随着时间的推移,这样的系统是否保持接近其初始状态。从物理学的角度来看,后者模拟这样的系统是否接近平衡。这些技术利用这些方程的几何方面来提取关键信息-例如非线性中的特殊结构-然后将其用于分析。该方法结合了深度傅里叶分析和规范理论的几何工具。第二部分的目标是研究二维向量场的沿着希尔伯特变换及其相关的极大算子。他们的治疗背离了经典的研究奇异积分在目前的情况下,奇异性生活在一些品种,是在每一点的变化。Nahmod将研究如何开发时频技术,以研究无曲率假设下的算子。例如,在研究沿沿着向量场的函数的可微性时就是这种情况。偏微分方程是我们物理世界中许多现象的数学模型。波动方程模拟了不同种类的波(如光波)在均匀介质中的传播。保守型非线性模型出现在量子力学中,而其他变体出现在例如振动系统和半导体的研究中。非线性薛定谔方程在描述非线性波的各种物理背景中出现-例如激光束在折射率对波振幅敏感的介质中的传播,理想流体自由表面处的水波以及等离子体波。一些有趣的问题是关于局部和整体解的存在性,唯一性以及长期行为的整体解决方案。数学分析的作用是理解这些方程的解的行为,提供提取其定量和定性信息的工具,并为开发精确近似解的方法奠定基础。傅立叶分析和更广义的适应频率分解,如时间-频率分析,在于通过“调制波形”将复杂对象分解为局部化和易于理解的基本构件,然后以直接的方式将它们拼凑在一起。它的工作原理与乐谱非常相似。调制波形有四个属性:振幅(响度)、音阶(持续时间)、频率(音高)和位置(播放的瞬间)。对象可以是语音,雷达信号,以及光学,AC驱逐散射,波传播和其他非局部性质的现象中产生的振荡表达式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrea Nahmod其他文献
Andrea Nahmod的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrea Nahmod', 18)}}的其他基金
New Challenges in the Study of Propagation of Randomness for Nonlinear Evolution Equations
非线性演化方程随机传播研究的新挑战
- 批准号:
2400036 - 财政年份:2024
- 资助金额:
$ 10.2万 - 项目类别:
Standard Grant
Propagation of Randomness in Nonlinear Evolution Equations
非线性演化方程中随机性的传播
- 批准号:
2101381 - 财政年份:2021
- 资助金额:
$ 10.2万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Challenges in the Derivation and Dynamics of Quantum Systems
FRG:协作研究:量子系统推导和动力学的新挑战
- 批准号:
2052740 - 财政年份:2021
- 资助金额:
$ 10.2万 - 项目类别:
Standard Grant
Collaborative Research: Dynamics of Nonlinear Partial Differential Equations: Integrating Deterministic and Probabilistic Methods
合作研究:非线性偏微分方程的动力学:集成确定性和概率方法
- 批准号:
1800852 - 财政年份:2018
- 资助金额:
$ 10.2万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Long-Term Dynamics of Nonlinear Dispersive and Hyperbolic Equations: Deterministic and Probabilistic Methods
FRG:协作研究:非线性色散和双曲方程的长期动力学:确定性和概率方法
- 批准号:
1463714 - 财政年份:2015
- 资助金额:
$ 10.2万 - 项目类别:
Continuing Grant
New Challenges in Nonlinear PDEs.
非线性偏微分方程的新挑战。
- 批准号:
1201443 - 财政年份:2012
- 资助金额:
$ 10.2万 - 项目类别:
Continuing Grant
Nonlinear Fourier Analysis and Partial Differential Equations
非线性傅里叶分析和偏微分方程
- 批准号:
0803160 - 财政年份:2008
- 资助金额:
$ 10.2万 - 项目类别:
Standard Grant
Nonlinear Fourier Analysis And Geometric Dispersive Equations.
非线性傅里叶分析和几何色散方程。
- 批准号:
0503542 - 财政年份:2005
- 资助金额:
$ 10.2万 - 项目类别:
Continuing Grant
Harmonic Analysis and Partial Differential Equations
调和分析和偏微分方程
- 批准号:
9971159 - 财政年份:1999
- 资助金额:
$ 10.2万 - 项目类别:
Standard Grant
相似国自然基金
磁性的机器学习研究: 以图神经网络为中心
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
几何深度学习引导的全柔性分子对接方法研究
- 批准号:MS25B030050
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
变分次凸性及其应用
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
复杂任意薄壳结构几何、分析与优化一体化设计技术研究
- 批准号:JCZRYB202500271
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
Einstein度量的稳定性问题研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
极值原理、微分Harnack不等式、三圆定
理及其在几何分析中的应用
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
考虑疲劳损伤约束的结构等几何拓扑优化方法研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
极小超曲面的极小极大理论及其应用
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于图论的空间转录组数据分析方法研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
Ricci孤立子上的几何与分析
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
- 批准号:
2402028 - 财政年份:2024
- 资助金额:
$ 10.2万 - 项目类别:
Standard Grant
Geometric Harmonic Analysis: Advances in Radon-like Transforms and Related Topics
几何调和分析:类氡变换及相关主题的进展
- 批准号:
2348384 - 财政年份:2024
- 资助金额:
$ 10.2万 - 项目类别:
Standard Grant
International Conference on Harmonic Analysis, Partial Differential Equations, and Geometric Measure Theory
调和分析、偏微分方程和几何测度理论国际会议
- 批准号:
2247067 - 财政年份:2023
- 资助金额:
$ 10.2万 - 项目类别:
Standard Grant
Harmonic analysis, additive combinatorics and geometric measure theory
调和分析、加性组合学和几何测度论
- 批准号:
RGPIN-2017-03755 - 财政年份:2022
- 资助金额:
$ 10.2万 - 项目类别:
Discovery Grants Program - Individual
Harmonic analysis, additive combinatorics and geometric measure theory
调和分析、加性组合学和几何测度论
- 批准号:
RGPIN-2017-03755 - 财政年份:2021
- 资助金额:
$ 10.2万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Fractional Partial Differential Equations, Harmonic Analysis, and Their Applications in the Geometric Calculus of Variations and Quantitative Topology
职业:分数阶偏微分方程、调和分析及其在变分几何微积分和定量拓扑中的应用
- 批准号:
2044898 - 财政年份:2021
- 资助金额:
$ 10.2万 - 项目类别:
Continuing Grant
Geometric Harmonic Analysis: Affine and Frobenius-Hörmander Geometry
几何调和分析:仿射几何和 Frobenius-Hörmander 几何
- 批准号:
2054602 - 财政年份:2021
- 资助金额:
$ 10.2万 - 项目类别:
Standard Grant
Harmonic analysis, additive combinatorics and geometric measure theory
调和分析、加法组合学和几何测度论
- 批准号:
RGPIN-2017-03755 - 财政年份:2020
- 资助金额:
$ 10.2万 - 项目类别:
Discovery Grants Program - Individual
New development on higher order elliptic and parabolic PDEs -- cooperation between harmonic analysis and geometric analysis
高阶椭圆偏微分方程和抛物线偏微分方程的新进展——调和分析与几何分析的结合
- 批准号:
20KK0057 - 财政年份:2020
- 资助金额:
$ 10.2万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Collaborative Research: Geometric Harmonic Analysis in Learning and Inference: Theory and Applications
合作研究:学习和推理中的几何调和分析:理论与应用
- 批准号:
1854831 - 财政年份:2019
- 资助金额:
$ 10.2万 - 项目类别:
Continuing Grant