FRG: Collaborative Research: New Challenges in the Derivation and Dynamics of Quantum Systems

FRG:协作研究:量子系统推导和动力学的新挑战

基本信息

  • 批准号:
    2052740
  • 负责人:
  • 金额:
    $ 39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

The main scientific goal of this project is to study the interplay between certain nonlinear evolution partial differential equations (PDE) and the natural progenitor particle systems from which these equations are derived. The equations considered are fundamental models for wave propagation phenomena ranging from the microscopic (Bose Einstein Condensate) to the macroscopic (rogue waves in deep sea), and for the dynamics of gases (Vlasov equation). To address important challenges in studying these equations, the PIs adopt an innovative approach combining deterministic and probabilistic perspectives. Informed by the qualitative properties of these PDE, the principal objective of this project is to identify the correct analogues of such properties at the many particle level, and to demonstrate that these correspond to the known properties at the PDE level. The award will foster collaborations among US based researchers at various stages of their careers and provide research opportunities and support for students and postdoctoral scholars. Additional activities include three annual research workshops aimed at training, dissemination, and stimulate further research. In their analysis, the PIs consider two different but intimately related research directions at the forefront of mathematical physics, nonlinear PDE and probability. The first direction concerns the derivation of the Hamiltonian structure for nonlinear evolution equations, including kinetic equations such as the Vlasov equation, as well as a novel viewpoint on such derivations guided by Ebin-Marsden's seminal program in the context of hydrodynamics. The second direction is rooted on the integrability of the 1D cubic nonlinear Schrodinger (NLS) equation and pursues two lines of inquiry. One of these questions focuses on exploring the origins of integrability of the 1D cubic NLS through a series of projects aimed at unveiling correct analogues of integrability at the many particle level, and then at demonstrating that these correspond to the known properties at the NLS level. A second line of inquiry stems from the work of Lebowitz, Rose and Speer who posited that the grand canonical ensemble description of equilibrium behavior is expected to be false for integrable PDE. The PIs plan to settle this major open problem by constructing a suitable substitute.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的主要科学目标是研究某些非线性演化偏微分方程(PDE)与这些方程所源自的自然祖粒子系统之间的相互作用。所考虑的方程是波传播现象的基本模型,从微观(玻色爱因斯坦凝聚)到宏观(深海中的流氓波),以及气体的动力学(弗拉索夫方程)。为了解决研究这些方程的重要挑战,PI采用了一种结合确定性和概率观点的创新方法。通过这些PDE的定性性质,本项目的主要目标是在许多粒子水平上识别这些性质的正确类似物,并证明这些对应于PDE水平上的已知性质。该奖项将促进美国研究人员在其职业生涯的各个阶段的合作,并为学生和博士后学者提供研究机会和支持。其他活动包括三个年度研究讲习班,旨在培训、传播和促进进一步研究。 在他们的分析中,PI考虑了数学物理前沿的两个不同但密切相关的研究方向:非线性偏微分方程和概率。第一个方向涉及非线性演化方程的哈密顿结构的推导,包括动力学方程,如弗拉索夫方程,以及一个新的观点,这种推导的指导下,艾宾-马斯登的开创性计划的背景下,流体力学。第二个方向是植根于1D立方非线性薛定谔(NLS)方程的可积性,并追求两条调查线。其中一个问题的重点是通过一系列旨在揭示许多粒子水平上可积性的正确类似物的项目来探索一维立方NLS可积性的起源,然后证明这些对应于NLS水平上的已知性质。第二条调查线源于Lebowitz,Rose和Speer的工作,他们假设平衡行为的巨正则系综描述对于可积PDE是错误的。PI计划通过构建一个合适的替代品来解决这个主要的开放问题。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrea Nahmod其他文献

Andrea Nahmod的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrea Nahmod', 18)}}的其他基金

New Challenges in the Study of Propagation of Randomness for Nonlinear Evolution Equations
非线性演化方程随机传播研究的新挑战
  • 批准号:
    2400036
  • 财政年份:
    2024
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Propagation of Randomness in Nonlinear Evolution Equations
非线性演化方程中随机性的传播
  • 批准号:
    2101381
  • 财政年份:
    2021
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Collaborative Research: Dynamics of Nonlinear Partial Differential Equations: Integrating Deterministic and Probabilistic Methods
合作研究:非线性偏微分方程的动力学:集成确定性和概率方法
  • 批准号:
    1800852
  • 财政年份:
    2018
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Long-Term Dynamics of Nonlinear Dispersive and Hyperbolic Equations: Deterministic and Probabilistic Methods
FRG:协作研究:非线性色散和双曲方程的长期动力学:确定性和概率方法
  • 批准号:
    1463714
  • 财政年份:
    2015
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
New Challenges in Nonlinear PDEs.
非线性偏微分方程的新挑战。
  • 批准号:
    1201443
  • 财政年份:
    2012
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
Nonlinear Fourier Analysis and Partial Differential Equations
非线性傅里叶分析和偏微分方程
  • 批准号:
    0803160
  • 财政年份:
    2008
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Nonlinear Fourier Analysis And Geometric Dispersive Equations.
非线性傅里叶分析和几何色散方程。
  • 批准号:
    0503542
  • 财政年份:
    2005
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
Harmonic Analysis and Geometric Partial Differential Equations
调和分析与几何偏微分方程
  • 批准号:
    0202139
  • 财政年份:
    2002
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
Harmonic Analysis and Partial Differential Equations
调和分析和偏微分方程
  • 批准号:
    9971159
  • 财政年份:
    1999
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
  • 批准号:
    2245171
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2403764
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245021
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245097
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245147
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了