CRII: SHF: Real-time Approximate-Dynamic-Programming based Neuro-controllers for Dynamic Power Management in Power-Constrained Digital Systems

CRII:SHF:基于实时近似动态编程的神经控制器,用于功率受限数字系统中的动态功率管理

基本信息

  • 批准号:
    1464353
  • 负责人:
  • 金额:
    $ 17.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

With the Internet of Things (IoT) revolution, self-powered devices with embedded energy harvesters and integrated batteries have become a reality. Such energy sources are prone to wide variations in their voltage, current and power outputs. Simultaneously, load circuits undergo large dynamic ranges through fine-grained spatio-temporal power management, increasing number of power domains, decreasing decoupling between voltage domains and unreliable parasitics. However, the traditional power delivery network (which includes DC-DC converters and voltage regulators), are still designed for the worst-case corner and hence suffer from serious inefficiencies. This results in non-optimal power, performance and energy-efficiency of the overall system. This project proposes a novel and disruptive technology, where a highly dynamic power delivery network in IoT devices is envisioned, which can autonomously adapt, reconfigure and manage itself to meet the varying source and load conditions.The research draws inspiration from recent advances in Approximate Dynamic programming to provide real-time and optimal control of the power delivery network under highly dynamic conditions. Hardware based controllers will be developed to provide real-time optimization of the embedded regulators and DC-DC converters for maximum energy-efficiency under performance constraints. The success of this approach is pivoted on advances in the power delivery network, which will also be explored. Traditional ?static? designs cannot be controlled on the fly. Hence, the second principal theme of the research is to explore ?variable structure control? as a means of realizing an ultra-fast and dynamically reconfigurable power delivery system. This will enable orders of magnitude improvement in energy efficiency across wide dynamic ranges of operation and allow new applications for IoT devices with far reaching societal impact.
随着物联网(IoT)革命的发展,具有嵌入式能量采集器和集成电池的自供电设备已成为现实。这样的能量源在其电压、电流和功率输出方面易于发生大的变化。同时,负载电路通过细粒度的时空功率管理,增加电源域的数量,减少电压域之间的解耦和不可靠的寄生效应,经历大的动态范围。 然而,传统的电力输送网络(包括DC-DC转换器和电压调节器)仍然是针对最坏情况设计的,因此存在严重的效率低下。这导致整个系统的非最佳功率、性能和能量效率。该项目提出了一种新颖的颠覆性技术,设想在物联网设备中建立一个高度动态的电力输送网络,该网络可以自主适应,重新配置和管理自己,以满足不断变化的电源和负载条件。该研究从近似动态规划的最新进展中汲取灵感,以在高度动态条件下提供电力输送网络的实时和最佳控制。将开发基于硬件的控制器,以提供嵌入式稳压器和DC-DC转换器的实时优化,从而在性能约束下实现最大能效。这种方法的成功取决于电力输送网络的进步,这也将被探讨。传统的?静电干扰?设计不能在飞行中被控制。因此,本研究的第二个主题是探索?变结构控制作为实现超快速和动态可重新配置的功率输送系统的手段。这将在广泛的动态操作范围内实现能源效率的数量级提高,并允许物联网设备的新应用具有深远的社会影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Arijit Raychowdhury其他文献

A 24/48V to 0.8V-1.2V All-Digital Synchronous Buck Converter with Package-Integrated GaN power FETs and 180nm Silicon Controller IC
具有封装集成 GaN 功率 FET 和 180nm 硅控制器 IC 的 24/48V 至 0.8V-1.2V 全数字同步降压转换器
Arbitrary Two-Pattern Delay Testing Using a Low-Overhead Supply Gating Technique

Arijit Raychowdhury的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Arijit Raychowdhury', 18)}}的其他基金

CCRI: Planning: Enabling Quantum Computer Science and Engineering
CCRI:规划:赋能量子计算机科学与工程
  • 批准号:
    2016666
  • 财政年份:
    2020
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
EAGER: Collaborative: Machine-Learning based Side-Channel Attack and Hardware Countermeasures
EAGER:协作:基于机器学习的侧通道攻击和硬件对策
  • 批准号:
    1935534
  • 财政年份:
    2019
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Collaborative: EM and Power Side-Channel Attack Immunity through High-Efficiency Hardware Obfuscations
SaTC:核心:小型:协作:通过高效硬件混淆来抵御电磁和电源侧通道攻击
  • 批准号:
    1717467
  • 财政年份:
    2017
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant

相似国自然基金

天然超短抗菌肽Temporin-SHf衍生多肽的构效分析与抗菌机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
衔接蛋白SHF负向调控胶质母细胞瘤中EGFR/EGFRvIII再循环和稳定性的功能及机制研究
  • 批准号:
    82302939
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
EGFR/GRβ/Shf调控环路在胶质瘤中的作用机制研究
  • 批准号:
    81572468
  • 批准年份:
    2015
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: SHF: Bio-Inspired Microsystems for Energy-Efficient Real-Time Sensing, Decision, and Adaptation
职业:SHF:用于节能实时传感、决策和适应的仿生微系统
  • 批准号:
    2340799
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
SHF: Core: Small: Real-time and Energy-Efficient Machine Learning for Robotics Applications
SHF:核心:小型:用于机器人应用的实时且节能的机器学习
  • 批准号:
    2341183
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CAREER: SHF: Chimp: Algorithm-Hardware-Automation Co-Design Exploration of Real-Time Energy-Efficient Motion Planning
职业:SHF:黑猩猩:实时节能运动规划的算法-硬件-自动化协同设计探索
  • 批准号:
    2239945
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Medium: Integrated Verification of IoT and Real-time Communication Protocols
合作研究:SHF:中:物联网和实时通信协议的集成验证
  • 批准号:
    2211996
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CCF: SHF: Small: Self-Adaptive Interference-Avoiding Wireless Receiver Hardware through Real-Time Learning-Based Automatic Optimization of Power-Efficient Integrated Circuits
CCF:SHF:小型:通过基于实时学习的高能效集成电路自动优化实现自适应干扰避免无线接收器硬件
  • 批准号:
    2218845
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Integrated Verification of IoT and Real-time Communication Protocols
合作研究:SHF:中:物联网和实时通信协议的集成验证
  • 批准号:
    2211997
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
SHF: Small: A Design Automation Methodology for Flexible Real-Time Computing based on Split and Early Exit Neural Models
SHF:小型:基于分裂和早期退出神经模型的灵活实时计算的设计自动化方法
  • 批准号:
    2140154
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
SHF: Core: Small: Real-time and Energy-Efficient Machine Learning for Robotics Applications
SHF:核心:小型:用于机器人应用的实时且节能的机器学习
  • 批准号:
    2128036
  • 财政年份:
    2021
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
SHF: Medium: Enabling Real-Time Federated Learning at the Edge: Algorithm and Circuit Co-Design
SHF:中:在边缘实现实时联合学习:算法和电路协同设计
  • 批准号:
    1955450
  • 财政年份:
    2020
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
SHF: Small: Programming Foundations for Real-Time Data Analysis
SHF:小型:实时数据分析的编程基础
  • 批准号:
    2008096
  • 财政年份:
    2020
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了