EAGER: Collaborative: Machine-Learning based Side-Channel Attack and Hardware Countermeasures

EAGER:协作:基于机器学习的侧通道攻击和硬件对策

基本信息

  • 批准号:
    1935534
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-01 至 2022-09-30
  • 项目状态:
    已结题

项目摘要

Digital Encryption is typically performed by specialized circuits to ensure confidentiality and integrity of data. While encryption is mathematically robust, the circuits encrypting data may leak information via the amount of the power drawn from the supply, and the amount of electromagnetic (EM) radiation that emanates from the circuit. This is known as side-channel leakage. An attacker may be able to unravel the secret cryptographic information by analyzing the side-channel leakage, thereby compromising security. Newer analysis techniques based on machine-learning make the attack easier. This proposal will study how these attacks are performed to develop means of protection against such attacks.Machine learning (ML) based side-channel attack (SCA) increases the attack surface of secure hardware, as an attacker can potentially compromise a device using a few power and EM traces. This proposal will provide a comprehensive analysis for new attack models and countermeasures through: (1) analysis and development of the best possible Deep Learning based SCA attack (on power and EM). (2) Design and demonstrate low-overhead countermeasures to enable "critical" crypto signature attenuation and reduce the signal-to-noise ratio by a factor of 500. The goal of this proposal is to develop end-to-end models to build defense mechanisms for both protected and unprotected Advanced Encryption Standard implementations. Results from this project will be disseminated through papers and articles, which will be made publicly available. Results from this project will be incorporated into the courses taught by the investigators. Investigators will seek to work with undergraduate students providing hands-on experience on cryptography and side-channel attacks and analysis.The data generated from this project will be in the form of simulation results and models, software tools and hardware measurements. The developed models and benchmarking software will be uploaded to GitHub at: https://github.com/anupamgolder/mlscaThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数字加密通常由专用电路执行,以确保数据的机密性和完整性。虽然加密在数学上是鲁棒的,但是加密数据的电路可能经由从电源汲取的功率的量以及从电路发出的电磁(EM)辐射的量来泄漏信息。这被称为侧通道泄漏。攻击者可能能够通过分析侧信道泄漏来解开秘密密码信息,从而危及安全性。基于机器学习的新分析技术使攻击更容易。该提案将研究这些攻击是如何执行的,以开发针对此类攻击的保护手段。基于机器学习(ML)的侧信道攻击(SCA)增加了安全硬件的攻击面,因为攻击者可以使用一些电源和EM痕迹来破坏设备。该提案将通过以下方式为新的攻击模型和对策提供全面的分析:(1)分析和开发最佳的基于深度学习的SCA攻击(对电源和EM)。(2)设计并演示低开销对策,以实现“关键”加密签名衰减,并将信噪比降低500倍。本提案的目标是开发端到端模型,为受保护和不受保护的高级加密标准实现构建防御机制。该项目的成果将通过公开发表的论文和文章传播。该项目的成果将纳入调查人员讲授的课程。研究人员将寻求与本科生合作,提供密码学和侧信道攻击和分析方面的实践经验。该项目产生的数据将以模拟结果和模型、软件工具和硬件测量的形式出现。开发的模型和基准测试软件将上传到GitHub:https://github.com/anupamgolder/mlscaThis奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Arijit Raychowdhury其他文献

A 24/48V to 0.8V-1.2V All-Digital Synchronous Buck Converter with Package-Integrated GaN power FETs and 180nm Silicon Controller IC
具有封装集成 GaN 功率 FET 和 180nm 硅控制器 IC 的 24/48V 至 0.8V-1.2V 全数字同步降压转换器
Arbitrary Two-Pattern Delay Testing Using a Low-Overhead Supply Gating Technique

Arijit Raychowdhury的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Arijit Raychowdhury', 18)}}的其他基金

CCRI: Planning: Enabling Quantum Computer Science and Engineering
CCRI:规划:赋能量子计算机科学与工程
  • 批准号:
    2016666
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Collaborative: EM and Power Side-Channel Attack Immunity through High-Efficiency Hardware Obfuscations
SaTC:核心:小型:协作:通过高效硬件混淆来抵御电磁和电源侧通道攻击
  • 批准号:
    1717467
  • 财政年份:
    2017
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CRII: SHF: Real-time Approximate-Dynamic-Programming based Neuro-controllers for Dynamic Power Management in Power-Constrained Digital Systems
CRII:SHF:基于实时近似动态编程的神经控制器,用于功率受限数字系统中的动态功率管理
  • 批准号:
    1464353
  • 财政年份:
    2015
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: EAGER: ADAPT: Machine Learning Thermodynamic Speed Limits for Dynamic Materials
协作研究:EAGER:ADAPT:动态材料的机器学习热力学速度限制
  • 批准号:
    2231470
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Generation of High Resolution Surface Melting Maps over Antarctica using Regional Climate Models, Remote Sensing and Machine Learning
合作研究:EAGER:利用区域气候模型、遥感和机器学习生成南极洲高分辨率表面融化地图
  • 批准号:
    2136938
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: ADAPT: Machine Learning Thermodynamic Speed Limits for Dynamic Materials
协作研究:EAGER:ADAPT:动态材料的机器学习热力学速度限制
  • 批准号:
    2231469
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Generation of High Resolution Surface Melting Maps over Antarctica Using Regional Climate Models, Remote Sensing and Machine Learning
合作研究:EAGER:利用区域气候模型、遥感和机器学习生成南极洲高分辨率表面融化地图
  • 批准号:
    2136940
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Generation of High Resolution Surface Melting Maps over Antarctica Using Regional Climate Models, Remote Sensing and Machine Learning
合作研究:EAGER:利用区域气候模型、遥感和机器学习生成南极洲高分辨率表面融化地图
  • 批准号:
    2136939
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Bayesian Reasoning Machine on a Magneto-tunneling Junction Network
EAGER:协作研究:磁隧道结网络上的贝叶斯推理机
  • 批准号:
    2001239
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CoPe EAGER: Collaborative Research: COMET: the Coastlines and people Open data and MachinE learning sprinT
CoPe EAGER:协作研究:COMET:海岸线和人类 开放数据和机器学习冲刺
  • 批准号:
    2102126
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Understanding Human Behaviors and Mental Health using Federated Machine Learning on Smart Phones
EAGER:协作研究:使用智能手机上的联合机器学习了解人类行为和心理健康
  • 批准号:
    2041096
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: SaTC-EDU: Dynamic Adaptive Machine Learning for Teaching Hardware Security (DYNAMITES)
合作研究:EAGER:SaTC-EDU:用于教学硬件安全的动态自适应机器学习 (DYNAMITES)
  • 批准号:
    2039607
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research:III: Exploring Physics Guided Machine Learning for Accelerating Sensing and Physical Sciences
EAGER:协作研究:III:探索物理引导机器学习以加速传感和物理科学
  • 批准号:
    2026710
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了