Quiver moduli and quantized Donaldson-Thomas type invariants

箭袋模量和量化 Donaldson-Thomas 型不变量

基本信息

项目摘要

The central aims of the project are the explicit computation of quantized Donaldson- Thomas type invariants for quivers with stability and superpotential, the continuation of the categorification programme of M. Kontsevich and Y. Soibelman for quantized Donaldson-Thomas type invariants in terms of Cohomological Hall algebras, the exploration of the relation between quantized Donaldson- Thomas type invariants and (refinements of) Kac polynomials with a view towards the Kac conjecture, and the geometrization of the GW/Kronecker correspondence between Gromov-Witten invariants of toric surfaces and DT type invariants of quivers.
该项目的中心目标是明确计算具有稳定性和超势的颤子的量子化Donaldson-Thomas型不变量,继续M. Kontsevich和Y. Soibelman在上同调霍尔代数中量子化Donaldson-Thomas型不变量的分类方案,从Kac猜想的角度探索量子化Donaldson-Thomas型不变量与Kac多项式(改进)之间的关系。以及环面Gromov-Witten不变量与颤振DT不变量之间的GW/Kronecker对应的几何化。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Markus Reineke其他文献

Professor Dr. Markus Reineke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Markus Reineke', 18)}}的其他基金

DFG-RSF: Geometry and representation theory at the interface of Lie algebras and quivers
DFG-RSF:李代数和箭袋接口的几何和表示论
  • 批准号:
    308831127
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Unitäre Darstellungen zwischen Physik und Mathematik bei George Mackey (1916 - 2006)
物理与数学之间的一神论表述,乔治·麦基 (George Mackey) (1916 - 2006)
  • 批准号:
    77330179
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

高维代数流形Moduli空间和纤维丛的几何及其正特征代数簇相关问题
  • 批准号:
    11271070
  • 批准年份:
    2012
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
辛几何中的开“格罗莫夫-威腾”不变量
  • 批准号:
    10901084
  • 批准年份:
    2009
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
标准模型精确检验和新物理研究
  • 批准号:
    10747127
  • 批准年份:
    2007
  • 资助金额:
    2.0 万元
  • 项目类别:
    专项基金项目
Deligne-Mumford模空间的拓扑和二维orbifold的弦理论研究
  • 批准号:
    10401026
  • 批准年份:
    2004
  • 资助金额:
    10.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Logarithmic enumerative geometry and moduli spaces
对数枚举几何和模空间
  • 批准号:
    EP/Y037162/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
不確定特異性を持つ完全積分可能系の漸近解析・大域解析とmoduli空間の諸相
具有不确定奇点和模空间方面的完全可积系统的渐近分析/全局分析
  • 批准号:
    23K20219
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Moduli Spaces, Fundamental Groups, and Asphericality
职业:模空间、基本群和非球面性
  • 批准号:
    2338485
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Conference: Richmond Geometry Meeting: Geometric Topology and Moduli
会议:里士满几何会议:几何拓扑和模数
  • 批准号:
    2349810
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Novel Approaches to Geometry of Moduli Spaces
模空间几何的新方法
  • 批准号:
    2401387
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
New development of complex analysis in several variables using moduli and closings of an open Riemann surface
使用开放黎曼曲面的模数和闭包进行多变量复分析的新发展
  • 批准号:
    23K03140
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of singularities of extremal Riemann surfaces and Klein surfaces in moduli spaces
模空间中极值黎曼曲面和克莱因曲面的奇异性分析
  • 批准号:
    23K03138
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Conference: Arithmetic, Birational Geometry, and Moduli
会议:算术、双有理几何和模
  • 批准号:
    2309181
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference: Richmond Geometry Meeting: Knots, Moduli, and Strings
会议:里士满几何会议:结、模数和弦
  • 批准号:
    2240741
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Geometry and dynamics in moduli spaces of surfaces
表面模空间中的几何和动力学
  • 批准号:
    2304840
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了