Southwest Local Algebra Meeting 2015

2015年西南地方代数会议

基本信息

  • 批准号:
    1502192
  • 负责人:
  • 金额:
    $ 1.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-02-15 至 2016-01-31
  • 项目状态:
    已结题

项目摘要

This award supports participation in the Southwest Local Algebra Meeting 2015, held at Oklahoma State University on February 28 - March 1, 2015. This conference will facilitate interactions between students and faculty with interests in ring theory, broadly interpreted, from institutions in the Southwest. Algebraists in the Southwest region pursue research on a variety of topics under the umbrella of pure and applied ring theory. The geographical distances in the region are such that interactions between people at different institutions rarely happen spontaneously. The meeting will bring together students and faculty from a variety of institutions for inspiring talks, with ample time for scientific interaction, providing opportunities for participants to begin new collaborations and catalyzing new research projects. About 50 participants are expected, including students and young and senior faculty from throughout the Southwest and South. The participation of students from underrepresented minority groups, women, untenured faculty, and faculty at non-Ph.D. granting institutions is particularly encouraged. Six experts will deliver hour-long talks on topics within their areas of specialty; the lectures will be accessible to graduate students. The meeting will also feature three hour-long poster sessions in which the participating students will present their research. More information can be found at the conference webpage: http://www.math.ttu.edu/~lchriste/slam2015.html.The study of rings, in the broadest sense, is crucial to many branches of mathematics, including commutative and non-commutative geometry, group representations, number theory, coding theory, and cryptography. Participants will discuss several key problems in commutative algebra, including progress on finding bounds for Betti numbers, a topic that has significant implications for classical problems in combinatorics and algebraic geometry, including Cayley-Bacharach theory. Several speakers work in combinatorial or computational algebraic geometry and will also shed light on connections between these fields and commutative algebra. Finally, the research expertise of one speaker is in Lie theory, providing an opportunity to introduce ring theorists to problems in a different field close to their area of work.
该奖项支持参加2015年2月28日至3月1日在俄克拉荷马州立大学举行的2015年西南局部代数会议。这次会议将促进西南地区院校对环论感兴趣的学生和教职员工之间的互动。西南地区的代数学家在纯环论和应用环论的保护伞下对各种主题进行研究。该地区的地理距离如此之远,不同机构的人之间的互动很少自发发生。会议将汇集来自不同机构的学生和教职员工进行鼓舞人心的演讲,有充足的时间进行科学互动,为与会者提供开始新合作和催化新研究项目的机会。预计将有大约50人参加,其中包括来自西南部和南部的学生和年轻和资深教职员工。来自代表性不足的少数群体的学生、女性、非终身教职员工和非博士授予机构的教职员工的参与尤其受到鼓励。六位专家将就其专业领域内的主题进行长达一小时的演讲;这些讲座将向研究生开放。会议还将以三个小时的海报会议为特色,参与会议的学生将展示他们的研究成果。更多信息可以在会议的网页上找到:在最广泛的意义上,环的http://www.math.ttu.edu/~lchriste/slam2015.html.The研究对许多数学分支至关重要,包括交换和非交换几何、群表示、数论、编码论和密码学。与会者将讨论交换代数中的几个关键问题,包括寻找Betti数的界的进展,这一主题对组合学和代数几何中的经典问题具有重要意义,包括Cayley-Bacharach理论。几位演讲者从事组合或计算代数几何的工作,并将阐明这些领域与交换代数之间的联系。最后,一位演讲者的研究专长是谎言理论,这为环论者提供了一个机会,将他们介绍给他们工作领域附近不同领域的问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Francisco其他文献

Christopher Francisco的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

具有粘性逆Lax-Wendroff边界处理和紧凑WENO限制器的自适应网格local discontinuous Galerkin方法
  • 批准号:
    11872210
  • 批准年份:
    2018
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
miRNA-140调控软骨Local RAS对骨关节炎中骨-软骨复合单元血管增生和交互作用影响的研究
  • 批准号:
    81601936
  • 批准年份:
    2016
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Southwest Local Algebra Meeting 2023
西南地方代数会议 2023
  • 批准号:
    2302498
  • 财政年份:
    2023
  • 资助金额:
    $ 1.58万
  • 项目类别:
    Standard Grant
Homotopical methods and cohomological supports in local algebra
局部代数中的同伦方法和上同调支持
  • 批准号:
    2302567
  • 财政年份:
    2023
  • 资助金额:
    $ 1.58万
  • 项目类别:
    Standard Grant
Local Algebra and Local Representation Theory
局部代数和局部表示论
  • 批准号:
    2001368
  • 财政年份:
    2020
  • 资助金额:
    $ 1.58万
  • 项目类别:
    Continuing Grant
Southwest Local Algebra Meeting 2020
2020年西南地方代数会议
  • 批准号:
    1954625
  • 财政年份:
    2020
  • 资助金额:
    $ 1.58万
  • 项目类别:
    Standard Grant
Southwest Local Algebra Meeting 2018
2018年西南地方代数会议
  • 批准号:
    1803445
  • 财政年份:
    2018
  • 资助金额:
    $ 1.58万
  • 项目类别:
    Standard Grant
Southwest Local Algebra Meeting 2017
2017年西南地方代数会议
  • 批准号:
    1700755
  • 财政年份:
    2017
  • 资助金额:
    $ 1.58万
  • 项目类别:
    Standard Grant
Studies on geometry and algebra of knots and local moves
结和局部运动的几何和代数研究
  • 批准号:
    17K05265
  • 财政年份:
    2017
  • 资助金额:
    $ 1.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Local Cohomology in Commutative Algebra and Algebraic Geometry
交换代数和代数几何中的局部上同调
  • 批准号:
    1700748
  • 财政年份:
    2017
  • 资助金额:
    $ 1.58万
  • 项目类别:
    Standard Grant
Commutative Algebra: Set-Theoretic Complete Intersections, Local Cohomology, Free Resolutions, and Rees Rings
交换代数:集合论完全交集、局部上同调、自由解析和里斯环
  • 批准号:
    1601865
  • 财政年份:
    2016
  • 资助金额:
    $ 1.58万
  • 项目类别:
    Continuing Grant
Small-time local reachability of nonlinear systems using computer algebra
使用计算机代数的非线性系统小时局部可达性
  • 批准号:
    496114-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 1.58万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了