Southwest Local Algebra Meeting 2020
2020年西南地方代数会议
基本信息
- 批准号:1954625
- 负责人:
- 金额:$ 1.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports participation in the Southwest Local Algebra Meeting 2020, held at Tulane University on March 7 – March 8, 2020. This conference will facilitate interactions between students and faculty from institutions in the Southwest who have interests in ring theory. The study of rings, in the broadest sense, is crucial to many branches of mathematics, including commutative and non-commutative geometry, group representations, number theory, coding theory, and cryptography. Algebraists in the Southwest region pursue research on a variety of topics under the umbrella of pure and applied ring theory. The meeting will bring together students and faculty from a variety of institutions for inspiring talks, with ample time for scientific interaction, providing opportunities for participants to begin new collaborations and catalyzing new research projects. About 70 participants are expected, including students and young and senior faculty from throughout the South and Southwestern USA. The participation of students from underrepresented minority groups, women, untenured faculty, and faculty at non-Ph.D. granting institutions is particularly encouraged. Six experts will deliver hour-long talks on topics within their areas of specialty. The lectures are intended to be accessible to graduate students. The meeting will also feature three hour-long poster sessions in which the participating students will present their research. Participants will discuss several key problems in commutative algebra, including progress on finding bounds for Betti numbers, a topic that has significant implications for classical problems in combinatorics and algebraic geometry, including Cayley-Bacharach theory. Several speakers work in combinatorial or computational algebraic geometry and will also shed light on connections between these fields and commutative algebra. Finally, the research expertise of one speaker is in Representation Theory, providing an opportunity to introduce ring theorists to problems in a different field close to their areas of work. More information can be found at the conference webpage: http://www.math.ttu.edu/~lchriste/slam2020.html.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持参加2020年3月7日至3月8日在杜兰大学举行的2020年西南局部代数会议。这次会议将促进西南地区对环论感兴趣的学生和教职员工之间的互动。从最广泛的意义上讲,环的研究对数学的许多分支都是至关重要的,包括交换和非交换几何、群表示、数论、编码论和密码学。西南地区的代数学家在纯环论和应用环论的保护伞下对各种主题进行研究。会议将汇集来自不同机构的学生和教职员工进行鼓舞人心的演讲,有充足的时间进行科学互动,为与会者提供开始新合作和催化新研究项目的机会。预计将有大约70人参加,其中包括来自美国南部和西南部的学生和年轻和资深教职员工。来自代表性不足的少数群体的学生、女性、非终身教职员工和非博士授予机构的教职员工的参与尤其受到鼓励。六位专家将就各自专业领域的主题发表长达一小时的演讲。这些讲座的目的是让研究生能够听懂。会议还将以三个小时的海报会议为特色,参与会议的学生将展示他们的研究成果。与会者将讨论交换代数中的几个关键问题,包括寻找Betti数的界的进展,这一主题对组合学和代数几何中的经典问题具有重要意义,包括Cayley-Bacharach理论。几位演讲者从事组合或计算代数几何的工作,并将阐明这些领域与交换代数之间的联系。最后,一位演讲者的研究专长是表象理论,这为环论者提供了一个机会,将他们介绍给他们工作领域附近不同领域的问题。更多信息可在会议网页上找到:http://www.math.ttu.edu/~lchriste/slam2020.html.This奖反映了美国国家科学基金会的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tai Ha其他文献
Tai Ha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tai Ha', 18)}}的其他基金
Interactions between Commutative Algebra and Algebraic Geometry
交换代数与代数几何之间的相互作用
- 批准号:
1243074 - 财政年份:2012
- 资助金额:
$ 1.25万 - 项目类别:
Standard Grant
相似国自然基金
具有粘性逆Lax-Wendroff边界处理和紧凑WENO限制器的自适应网格local discontinuous Galerkin方法
- 批准号:11872210
- 批准年份:2018
- 资助金额:63.0 万元
- 项目类别:面上项目
miRNA-140调控软骨Local RAS对骨关节炎中骨-软骨复合单元血管增生和交互作用影响的研究
- 批准号:81601936
- 批准年份:2016
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Southwest Local Algebra Meeting 2023
西南地方代数会议 2023
- 批准号:
2302498 - 财政年份:2023
- 资助金额:
$ 1.25万 - 项目类别:
Standard Grant
Homotopical methods and cohomological supports in local algebra
局部代数中的同伦方法和上同调支持
- 批准号:
2302567 - 财政年份:2023
- 资助金额:
$ 1.25万 - 项目类别:
Standard Grant
Local Algebra and Local Representation Theory
局部代数和局部表示论
- 批准号:
2001368 - 财政年份:2020
- 资助金额:
$ 1.25万 - 项目类别:
Continuing Grant
Southwest Local Algebra Meeting 2018
2018年西南地方代数会议
- 批准号:
1803445 - 财政年份:2018
- 资助金额:
$ 1.25万 - 项目类别:
Standard Grant
Southwest Local Algebra Meeting 2017
2017年西南地方代数会议
- 批准号:
1700755 - 财政年份:2017
- 资助金额:
$ 1.25万 - 项目类别:
Standard Grant
Studies on geometry and algebra of knots and local moves
结和局部运动的几何和代数研究
- 批准号:
17K05265 - 财政年份:2017
- 资助金额:
$ 1.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Local Cohomology in Commutative Algebra and Algebraic Geometry
交换代数和代数几何中的局部上同调
- 批准号:
1700748 - 财政年份:2017
- 资助金额:
$ 1.25万 - 项目类别:
Standard Grant
Commutative Algebra: Set-Theoretic Complete Intersections, Local Cohomology, Free Resolutions, and Rees Rings
交换代数:集合论完全交集、局部上同调、自由解析和里斯环
- 批准号:
1601865 - 财政年份:2016
- 资助金额:
$ 1.25万 - 项目类别:
Continuing Grant
Small-time local reachability of nonlinear systems using computer algebra
使用计算机代数的非线性系统小时局部可达性
- 批准号:
496114-2016 - 财政年份:2016
- 资助金额:
$ 1.25万 - 项目类别:
University Undergraduate Student Research Awards
Southwest Local Algebra Meeting 2015
2015年西南地方代数会议
- 批准号:
1502192 - 财政年份:2015
- 资助金额:
$ 1.25万 - 项目类别:
Standard Grant