Southwest Local Algebra Meeting 2018

2018年西南地方代数会议

基本信息

  • 批准号:
    1803445
  • 负责人:
  • 金额:
    $ 1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-02-01 至 2019-01-31
  • 项目状态:
    已结题

项目摘要

This award supports the participation in the Southwest Local Algebra Meeting 2018, to be held at the University of Arkansas in Fayetteville on February 24-25, 2018. This conference will encourage professional networking and interactions between students and faculty with interests in ring theory, broadly interpreted, from institutions in the Southwest region. The meeting will provide an effective environment for scientific interaction, thanks to inspiring talks from established experts, ample time dedicated to graduate students poster presentations and opportunities for participants to begin new collaborations and exploring new research directions. About 50 participants are expected, including students and both junior and senior faculty from throughout the Southwest and South. The participation of students from underrepresented minority groups, women, untenured faculty and faculty at non-PhD granting institutions is particularly encouraged. Six experts will deliver hour-long talks on topics within their areas of specialty; the lectures will be accessible to graduate students. The meeting will also feature three hour-long poster sessions in which the participating students will present and discuss their research with the participants. More information can be found at the conference webpage http://www.math.ttu.edu/~lchriste/slam2018.html. The study of rings, in the broadest sense, is essential in many branches of mathematics, including commutative and non-commutative geometry, number theory, coding theory, group representations and cryptography. The speakers are specialists in differential graded algebras, intersection multiplicities, Rees algebras, Lie theory, representations of finite and algebraic groups, algebraic combinatorics, complexity theory, homological methods. This variety of interests among our speakers should provide directions for new algebraic interactions between all participants and expand their potential research horizons.
该奖项支持参加西南地方代数会议2018年,将于2018年2月24日至25日在费耶特维尔的阿肯色州大学举行。本次会议将鼓励专业的网络和学生和教师之间的互动与环理论的兴趣,广泛的解释,从西南地区的机构。会议将为科学互动提供一个有效的环境,这要归功于知名专家的鼓舞人心的演讲,研究生海报展示的充足时间以及参与者开始新合作和探索新研究方向的机会。预计将有大约50名与会者,包括来自西南部和南部的学生和初级和高级教师。特别鼓励来自代表性不足的少数群体的学生、妇女、非终身教职人员和非博士授予机构的教师的参与。六位专家将就其专业领域内的主题进行长达一小时的演讲;研究生可以参加讲座。会议还将举行三个小时的海报会议,与会学生将介绍并与与会者讨论他们的研究。更多信息可以在会议网页http://www.math.ttu.edu/~lchriste/slam2018.html上找到。环的研究,在最广泛的意义上,是必不可少的许多数学分支,包括交换和非交换几何,数论,编码理论,群表示和密码学。发言者是专家微分代数,交叉多重性,里斯代数,李理论,有限和代数群,代数组合,复杂性理论,同调方法的表示。我们的演讲者之间的这种兴趣应该为所有参与者之间的新代数互动提供方向,并扩大他们潜在的研究视野。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paolo Mantero其他文献

The projective dimension of codimension two algebras presented by quadrics
  • DOI:
    10.1016/j.jalgebra.2013.06.038
  • 发表时间:
    2013-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Craig Huneke;Paolo Mantero;Jason McCullough;Alexandra Seceleanu
  • 通讯作者:
    Alexandra Seceleanu

Paolo Mantero的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

具有粘性逆Lax-Wendroff边界处理和紧凑WENO限制器的自适应网格local discontinuous Galerkin方法
  • 批准号:
    11872210
  • 批准年份:
    2018
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
miRNA-140调控软骨Local RAS对骨关节炎中骨-软骨复合单元血管增生和交互作用影响的研究
  • 批准号:
    81601936
  • 批准年份:
    2016
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Southwest Local Algebra Meeting 2023
西南地方代数会议 2023
  • 批准号:
    2302498
  • 财政年份:
    2023
  • 资助金额:
    $ 1万
  • 项目类别:
    Standard Grant
Homotopical methods and cohomological supports in local algebra
局部代数中的同伦方法和上同调支持
  • 批准号:
    2302567
  • 财政年份:
    2023
  • 资助金额:
    $ 1万
  • 项目类别:
    Standard Grant
Local Algebra and Local Representation Theory
局部代数和局部表示论
  • 批准号:
    2001368
  • 财政年份:
    2020
  • 资助金额:
    $ 1万
  • 项目类别:
    Continuing Grant
Southwest Local Algebra Meeting 2020
2020年西南地方代数会议
  • 批准号:
    1954625
  • 财政年份:
    2020
  • 资助金额:
    $ 1万
  • 项目类别:
    Standard Grant
Southwest Local Algebra Meeting 2017
2017年西南地方代数会议
  • 批准号:
    1700755
  • 财政年份:
    2017
  • 资助金额:
    $ 1万
  • 项目类别:
    Standard Grant
Studies on geometry and algebra of knots and local moves
结和局部运动的几何和代数研究
  • 批准号:
    17K05265
  • 财政年份:
    2017
  • 资助金额:
    $ 1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Local Cohomology in Commutative Algebra and Algebraic Geometry
交换代数和代数几何中的局部上同调
  • 批准号:
    1700748
  • 财政年份:
    2017
  • 资助金额:
    $ 1万
  • 项目类别:
    Standard Grant
Commutative Algebra: Set-Theoretic Complete Intersections, Local Cohomology, Free Resolutions, and Rees Rings
交换代数:集合论完全交集、局部上同调、自由解析和里斯环
  • 批准号:
    1601865
  • 财政年份:
    2016
  • 资助金额:
    $ 1万
  • 项目类别:
    Continuing Grant
Small-time local reachability of nonlinear systems using computer algebra
使用计算机代数的非线性系统小时局部可达性
  • 批准号:
    496114-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 1万
  • 项目类别:
    University Undergraduate Student Research Awards
Southwest Local Algebra Meeting 2015
2015年西南地方代数会议
  • 批准号:
    1502192
  • 财政年份:
    2015
  • 资助金额:
    $ 1万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了