Southwest Local Algebra Meeting 2023
西南地方代数会议 2023
基本信息
- 批准号:2302498
- 负责人:
- 金额:$ 1.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-15 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports participation in the Southwest Local Algebra Meeting at the University of North Texas, March 4–5, 2023. The conference will catalyze interactions between students and faculty from institutions throughout the Southwest working broadly in rings, fields, and groups. Algebraists in the region pursue research on a variety of topics under the umbrella of pure and applied algebra, but the geographical distances between institutions make it difficult to establish new collaborations. This meeting will bring together students and faculty from a variety of backgrounds for lively talks, scientific interactions, and professional networking, with ample time to explore new research projects. About 80 – 100 participants are expected from throughout the Southwest and South regions, including graduate students and both junior and senior faculty. The meeting particularly encourages participation of algebraists from groups historically underrepresented in mathematics, as well as nontenured faculty and faculty at non-PhD-granting institutions. Algebraic structures are crucial to many branches of mathematics, including coding theory, cryptography, combinatorics, geometry, topology, number theory, and mathematical physics. At this conference, six experts will deliver hour-long talks accessible to graduate students, and students will present research in three hour-long poster sessions. The speakers are specialists in algebraic combinatorics, automorphic forms, homological algebra, algebraic geometry, non-commutative geometry, and both commutative and non-commutative algebra. This variety of interests is expected to bolster creative interactions between participants. More information can be found at the conference webpage: http://www.math.ttu.edu/~lchriste/slam2023.html.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持在西南地方代数会议在北德克萨斯大学,2023年3月4日至5日的参与。会议将促进学生和教师之间的互动,从整个西南地区的工作广泛的戒指,领域和团体的机构。该地区的代数学家在纯代数和应用代数的保护伞下进行各种主题的研究,但机构之间的地理距离使其难以建立新的合作。本次会议将汇集来自不同背景的学生和教师进行生动的谈话,科学互动和专业网络,有充足的时间探索新的研究项目。预计约有80 - 100名与会者来自整个西南和南部地区,包括研究生和初级和高级教师。会议特别鼓励代数学家从历史上在数学代表性不足的群体,以及非终身教职员工和教师在非博士授予机构的参与。代数结构对数学的许多分支都至关重要,包括编码理论、密码学、组合学、几何学、拓扑学、数论和数学物理学。在这次会议上,六位专家将提供长达一小时的讲座,研究生可以参加,学生将在三个小时的海报会议上展示研究成果。发言者是专家在代数组合,自守形式,同调代数,代数几何,非交换几何,以及交换和非交换代数。这种兴趣的多样性有望促进参与者之间的创造性互动。更多信息可以在会议网页上找到:http://www.math.ttu.edu/~lchriste/slam2023.html.This奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles Conley其他文献
On Some New Long Periodic Solutions of The Plane Restricted Three Body Problem
- DOI:
10.1002/cpa.3160160405 - 发表时间:
1963 - 期刊:
- 影响因子:3
- 作者:
Charles Conley - 通讯作者:
Charles Conley
Charles Conley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charles Conley', 18)}}的其他基金
International Research Fellow Awards: Gauge Supergroups, Indecomposable Representations of Semidirect Product Lie Groups
国际研究员奖:规范超群、半直积李群的不可分解表示
- 批准号:
9703942 - 财政年份:1997
- 资助金额:
$ 1.6万 - 项目类别:
Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
- 批准号:
9107878 - 财政年份:1991
- 资助金额:
$ 1.6万 - 项目类别:
Fellowship Award
Global and Asymptotic Problems in Differential Equations
微分方程中的全局问题和渐近问题
- 批准号:
8001816 - 财政年份:1980
- 资助金额:
$ 1.6万 - 项目类别:
Continuing Grant
Global and Asymptotic Problems in Differential Equations
微分方程中的全局问题和渐近问题
- 批准号:
7801254 - 财政年份:1978
- 资助金额:
$ 1.6万 - 项目类别:
Standard Grant
Global Amd Asymptotic Problems in Differential Equations
微分方程中的全局AMD渐近问题
- 批准号:
7606320 - 财政年份:1976
- 资助金额:
$ 1.6万 - 项目类别:
Standard Grant
Global and Asymptotic Problems in Differential Equations
微分方程中的全局问题和渐近问题
- 批准号:
7102739 - 财政年份:1971
- 资助金额:
$ 1.6万 - 项目类别:
Standard Grant
相似国自然基金
具有粘性逆Lax-Wendroff边界处理和紧凑WENO限制器的自适应网格local discontinuous Galerkin方法
- 批准号:11872210
- 批准年份:2018
- 资助金额:63.0 万元
- 项目类别:面上项目
miRNA-140调控软骨Local RAS对骨关节炎中骨-软骨复合单元血管增生和交互作用影响的研究
- 批准号:81601936
- 批准年份:2016
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Homotopical methods and cohomological supports in local algebra
局部代数中的同伦方法和上同调支持
- 批准号:
2302567 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
Standard Grant
Local Algebra and Local Representation Theory
局部代数和局部表示论
- 批准号:
2001368 - 财政年份:2020
- 资助金额:
$ 1.6万 - 项目类别:
Continuing Grant
Southwest Local Algebra Meeting 2020
2020年西南地方代数会议
- 批准号:
1954625 - 财政年份:2020
- 资助金额:
$ 1.6万 - 项目类别:
Standard Grant
Southwest Local Algebra Meeting 2018
2018年西南地方代数会议
- 批准号:
1803445 - 财政年份:2018
- 资助金额:
$ 1.6万 - 项目类别:
Standard Grant
Southwest Local Algebra Meeting 2017
2017年西南地方代数会议
- 批准号:
1700755 - 财政年份:2017
- 资助金额:
$ 1.6万 - 项目类别:
Standard Grant
Studies on geometry and algebra of knots and local moves
结和局部运动的几何和代数研究
- 批准号:
17K05265 - 财政年份:2017
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Local Cohomology in Commutative Algebra and Algebraic Geometry
交换代数和代数几何中的局部上同调
- 批准号:
1700748 - 财政年份:2017
- 资助金额:
$ 1.6万 - 项目类别:
Standard Grant
Commutative Algebra: Set-Theoretic Complete Intersections, Local Cohomology, Free Resolutions, and Rees Rings
交换代数:集合论完全交集、局部上同调、自由解析和里斯环
- 批准号:
1601865 - 财政年份:2016
- 资助金额:
$ 1.6万 - 项目类别:
Continuing Grant
Small-time local reachability of nonlinear systems using computer algebra
使用计算机代数的非线性系统小时局部可达性
- 批准号:
496114-2016 - 财政年份:2016
- 资助金额:
$ 1.6万 - 项目类别:
University Undergraduate Student Research Awards
Southwest Local Algebra Meeting 2015
2015年西南地方代数会议
- 批准号:
1502192 - 财政年份:2015
- 资助金额:
$ 1.6万 - 项目类别:
Standard Grant