Collaborative Research: Controlled Disorder and Topological Defects in Magnetically Frustrated Thin Film Metamaterials
合作研究:磁阻薄膜超材料中的受控无序和拓扑缺陷
基本信息
- 批准号:1507058
- 负责人:
- 金额:$ 12.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-06-01 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nontechnical Abstract:Modern techniques for nanoscale patterning of thin films yield metamaterials that behave differently from those fabricated via traditional chemical techniques; and their fundamental properties can be markedly altered from bulk behavior, which involves the emergence of collective behavior from single-particle interactions in finite-size systems. The reduction of film dimensions into the nanometer range traverses natural length scales such as ferromagnetic domain wall widths (7-100 nm), and crosses a mesoscopic regime characterized by strong fluctuations that destabilize ordered ground states and must be controlled in modern devices. Alternatively, frustration imposed by geometrical constraints or competing interactions also prevents systems from reaching equilibrium. Artificial spin ices are exemplary metamaterials formed from thin "wires" whose large length-to-width ratio makes them behave as classical Ising spins that resist equilibration into magnetic order due to frustration and energy barriers. Understanding athermal dynamics in systems far from equilibrium is poorly understood, and relatively little work has addressed effects of disorder on spin ice dynamics. Artificial spin ices offer the advantage that their spatial order and topology can be carefully controlled, and their fluctuations engineered to cover a range of time scales. Our program investigates how control of periodic translational and point symmetries of wire networks results in strong changes in magnetic reversal and spin wave dynamics. Whereas random disorder can yield "spin glass" states with only short-range order, frustrated systems may "order out of disorder" that breaks periodic symmetry and reduces low-energy degeneracies. Bulk magnetic quasicrystals exhibit striking physical properties and frustration due to their signature long-range orientational order without periodic translational symmetry, placing them in a unique niche between periodic crystals and amorphous materials. Known bulk quasicrystals undergo spin-glass, rather than long-range magnetic order, and are difficult to grow and characterize in the laboratory. Our advances in nanofabrication have produced "artificial quasicrystals" whose relaxation dynamics, reversal, magnetic correlations and attainment of an equilibrium groundstate are systematically controlled via pattern design, in order to reveal what magnetic behaviors are inherent consequences of periodicity, quasiperiodicity or random disorder.Our students receive in-house instruction in thin film deposition and patterning, advanced numerical simulations, ferromagnetic resonance, static magnetization, X-ray reflectometry and atomic force microscopy. Very few laboratories can provide such a broad program of research tools and training. Thin films are patterned at the nanoscale for use in coherent soft X-ray scattering, scanning electron microscopy with polarization analysis, magnetic force microscopy and other experiments performed at Argonne, Lawrence Berkeley National Labs, and NIST, Gaithersburg. Senior investigators and graduate research assistants conduct workshops to provide elementary school teachers in Fayette County, Kentucky with instructional aids, curriculum and professional development needed to meet new STEM education goals promulgated by the U.S. and Kentucky Departments of Education. High school students from school districts neighboring Northwestern U. learn how to carry out advanced microwave measurements and data analyses of thin-film materials.Technical Abstract:The effects of disorder and reduced symmetry on the equilibrium and dynamic magnetic properties of patterned magnetic thin-film metamaterials that exhibit frustration and spin ice behavior are studied. Attention is focused on artificial quasicrystals whose aperiodic, long-range positional order places them in a unique niche between periodic Bravais lattices and randomly disordered glasses. A related set of aperiodic, long-range-ordered lattices based on Fibonacci distortions of periodic Bravais lattices reveal the effects of continuously variable aperiodicity on magnetic reversal, dynamics and spin ice behavior. Various types of random disorder can be patterned into all classes of metamaterials under study to systematically study effects of aperiodicity and variable point symmetry. Searches are underway for spin wave localization due to controlled lattice disorder, as well as for finite-size scaling behavior of physical observables in patterns having variable topology, size and disorder.Ferromagnetic resonance, static magnetization, nanoscale imaging techniques and numerical simulations are used to characterize magnetic textures, topological defects, spin waves, spin ice behavior and possible phase transitions in artificial frustrated lattices. Our Team intends to verify and expand on initial results of scanning electron microscopy with polarization analysis and numerical simulations that indicate as-grown samples of artificial quasicrystalline spin ice have magnetic textures that are very close to a long-sought ferromagnetic ground state. The equilibration and athermal dynamics of spin ices are investigated using the unique temporal coherence and phase sensitivity of X-ray photon coherent scattering as a function of temperature and magnetic field. Initial X-ray scattering results show a modest applied magnetic field can be used to control the transfer of orbital angular momentum to a soft X-ray "vortex beam" resonantly scattered from topological phase singularities generated in the magnetic texture of square artificial spin ice. Follow-up experiments seek to identify the exact topological features of spin ice textures that control vortex beam characteristics.
非技术摘要:现代技术的纳米尺度图案化的薄膜产量的超材料的行为不同,从那些通过传统的化学技术制造的;和他们的基本属性可以显着改变从散装行为,其中涉及到出现的集体行为从单粒子相互作用在有限尺寸的系统。 将膜尺寸减小到纳米范围跨越自然长度尺度,例如铁磁畴壁宽度(7-100 nm),并且跨越介观区域,其特征在于使有序基态不稳定的强烈波动,并且必须在现代设备中进行控制。 或者,几何约束或竞争相互作用所施加的挫折也会阻止系统达到平衡。 人造自旋冰是由细“线”形成的示例性超材料,其大的长宽比使它们表现为经典的伊辛自旋,其由于挫折和能量势垒而抵抗磁序的平衡。对远离平衡态的系统中的非热动力学的理解很少,相对较少的工作涉及无序对自旋冰动力学的影响。 人造自旋冰的优势在于,它们的空间秩序和拓扑结构可以被仔细控制,它们的波动可以被设计成覆盖一系列的时间尺度。我们的计划研究如何控制的周期性平移和点对称性的导线网络的结果在磁反转和自旋波动力学的强烈变化。虽然随机无序可以产生只有短程有序的“自旋玻璃”状态,但受挫折的系统可能会“无序有序”,打破周期对称性并减少低能简并。 大块磁性准晶表现出惊人的物理性能和挫折,由于其签名的长程取向顺序没有周期性平移对称,将它们放在一个独特的利基之间的周期性晶体和非晶材料。 已知的大块准晶经历自旋玻璃,而不是长程磁序,并且难以在实验室中生长和表征。我们在纳米纤维的进展已经产生了“人造准晶体”,其弛豫动力学,反转,磁相关性和平衡基态的实现通过图案设计系统地控制,以揭示什么样的磁性行为是周期性,准周期性或随机无序的内在后果。我们的学生接受薄膜沉积和图案化,先进的数值模拟,铁磁共振,静态磁化、X射线反射计和原子力显微镜。 很少有实验室能够提供如此广泛的研究工具和培训计划。 薄膜在纳米尺度上被图案化,用于相干软X射线散射、具有偏振分析的扫描电子显微镜、磁力显微镜和在阿贡、劳伦斯伯克利国家实验室和盖瑟斯堡的NIST进行的其他实验。 高级调查员和研究生研究助理举办研讨会,为肯塔基州费耶特县的小学教师提供教学辅助工具,课程和专业发展,以满足美国和肯塔基州教育部颁布的新STEM教育目标。 来自西北大学附近学区的高中生。学习如何进行先进的微波测量和数据分析的薄膜材料。技术摘要:无序和减少对称性的平衡和动态磁性图案化的磁性薄膜超材料,表现出挫折和自旋冰行为的影响进行了研究。 注意力集中在人工准晶的非周期性,远程位置顺序将它们放置在一个独特的利基周期布拉维晶格和随机无序的玻璃之间。 一组相关的非周期性,长程有序晶格周期布拉维晶格的斐波那契扭曲的基础上揭示了连续可变的非周期性磁反转,动力学和自旋冰行为的影响。 各种类型的随机无序可以被图案化到所研究的所有类别的超材料中,以系统地研究非周期性和变点对称性的影响。 目前,人们正在研究由晶格无序引起的自旋波局域化,以及在具有可变拓扑、尺寸和无序的图案中物理观测量的有限尺寸标度行为,铁磁共振、静态磁化、纳米成像技术和数值模拟被用来表征人工阻挫晶格中的磁织构、拓扑缺陷、自旋波、自旋冰行为和可能的相变。 我们的团队打算通过极化分析和数值模拟来验证和扩展扫描电子显微镜的初步结果,这些结果表明人工准晶自旋冰的生长样品具有非常接近长期寻求的铁磁基态的磁性纹理。 利用X射线光子相干散射的时间相干性和相位敏感性,研究了自旋冰的平衡和非热动力学.初始的X射线散射结果表明,一个适度的外加磁场可以用来控制转移的轨道角动量的软X射线“涡旋光束”共振散射的拓扑相位奇异产生的磁性纹理的方形人工自旋冰。 后续实验试图确定控制涡束特性的自旋冰纹理的确切拓扑特征。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Ketterson其他文献
John Ketterson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Ketterson', 18)}}的其他基金
Manipulation of Hole-pinned Vortices: Classical and Quantum
孔钉涡的操纵:经典和量子
- 批准号:
1905742 - 财政年份:2019
- 资助金额:
$ 12.83万 - 项目类别:
Continuing Grant
Collaborative Research: Size-effect driven nanoparticle ferromagnetism
合作研究:尺寸效应驱动的纳米颗粒铁磁性
- 批准号:
1508323 - 财政年份:2015
- 资助金额:
$ 12.83万 - 项目类别:
Continuing Grant
IGERT: Quantum Coherent Optical and Matter Systems
IGERT:量子相干光学和物质系统
- 批准号:
0801685 - 财政年份:2008
- 资助金额:
$ 12.83万 - 项目类别:
Continuing Grant
Collaborative Research: Collective Mode Spectroscopy in Unconventional Superconductors
合作研究:非常规超导体的集体模式光谱学
- 批准号:
0509357 - 财政年份:2005
- 资助金额:
$ 12.83万 - 项目类别:
Continuing Grant
IMR: Acquisition of a Physical Property Measurement System for Research and Education
IMR:购买用于研究和教育的物理特性测量系统
- 批准号:
0415144 - 财政年份:2004
- 资助金额:
$ 12.83万 - 项目类别:
Standard Grant
SENSORS: Collaborative Research: Biochemical Sensors and Data Processing for Security Applications
传感器:协作研究:用于安全应用的生化传感器和数据处理
- 批准号:
0329957 - 财政年份:2003
- 资助金额:
$ 12.83万 - 项目类别:
Continuing Grant
QuBIC: A Qubit Based on SINIS Josephson Tunnel Junctions
QuBIC:基于 SINIS 约瑟夫森隧道结的量子位
- 批准号:
0218652 - 财政年份:2002
- 资助金额:
$ 12.83万 - 项目类别:
Continuing Grant
U.S.-Germany Cooperative Research: The Fabrication and Study of Discrete Josephson Transmission Lines with Over- damped Multilayered Superconducting Tunnel
美德合作研究:过阻尼多层超导隧道离散约瑟夫森输电线路的制作与研究
- 批准号:
9603236 - 财政年份:1997
- 资助金额:
$ 12.83万 - 项目类别:
Standard Grant
Collective Mode Studies in Superfluid Fermi Systems
超流体费米系统的集体模式研究
- 批准号:
9623682 - 财政年份:1996
- 资助金额:
$ 12.83万 - 项目类别:
Continuing Grant
Multilayer Josephson Junction Digital Devices
多层约瑟夫森结数字器件
- 批准号:
9500279 - 财政年份:1995
- 资助金额:
$ 12.83万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Protein engineering and processing of plant viral templates for controlled nanoparticle synthesis
合作研究:用于受控纳米颗粒合成的植物病毒模板的蛋白质工程和加工
- 批准号:
2426065 - 财政年份:2024
- 资助金额:
$ 12.83万 - 项目类别:
Continuing Grant
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
- 批准号:
2318829 - 财政年份:2023
- 资助金额:
$ 12.83万 - 项目类别:
Continuing Grant
Collaborative Research: Assessing the Causal Influence of Atmospheric Opacity and Sea Ice on Arctic Warming in a Novel Circulation-controlled Framework
合作研究:在新型环流控制框架中评估大气不透明度和海冰对北极变暖的因果影响
- 批准号:
2233420 - 财政年份:2023
- 资助金额:
$ 12.83万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Synthetic machines from feedback-controlled active matter
合作研究:DMREF:反馈控制活性物质的合成机器
- 批准号:
2324195 - 财政年份:2023
- 资助金额:
$ 12.83万 - 项目类别:
Standard Grant
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
- 批准号:
2318830 - 财政年份:2023
- 资助金额:
$ 12.83万 - 项目类别:
Continuing Grant
Collaborative Research: Unlocking the Potential of Active Lipid Vesicles for Directed Delivery and Controlled Release of Therapeutic Payloads
合作研究:释放活性脂质囊泡用于治疗有效负载的定向递送和受控释放的潜力
- 批准号:
2323046 - 财政年份:2023
- 资助金额:
$ 12.83万 - 项目类别:
Standard Grant
Collaborative Research: Unlocking the Potential of Active Lipid Vesicles for Directed Delivery and Controlled Release of Therapeutic Payloads
合作研究:释放活性脂质囊泡用于治疗有效负载的定向递送和受控释放的潜力
- 批准号:
2323045 - 财政年份:2023
- 资助金额:
$ 12.83万 - 项目类别:
Standard Grant
Collaborative Research: Assessing the Causal Influence of Atmospheric Opacity and Sea Ice on Arctic Warming in a Novel Circulation-controlled Framework
合作研究:在新型环流控制框架中评估大气不透明度和海冰对北极变暖的因果影响
- 批准号:
2233421 - 财政年份:2023
- 资助金额:
$ 12.83万 - 项目类别:
Standard Grant
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
- 批准号:
2318831 - 财政年份:2023
- 资助金额:
$ 12.83万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Synthetic machines from feedback-controlled active matter
合作研究:DMREF:反馈控制活性物质的合成机器
- 批准号:
2324194 - 财政年份:2023
- 资助金额:
$ 12.83万 - 项目类别:
Standard Grant