Manipulation of Hole-pinned Vortices: Classical and Quantum

孔钉涡的操纵:经典和量子

基本信息

  • 批准号:
    1905742
  • 负责人:
  • 金额:
    $ 51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-12-15 至 2023-11-30
  • 项目状态:
    已结题

项目摘要

Non-Technical AbstractSuperconductors, which transport electric current without loss, also expel a magnetic field. However, above some critical field magnetic flux enters a superconductor through the formation of an array of swirling currents of superconducting electrons, called vortices. The movement of these vortices can destroy the superconducting property. High field magnets avoid this problem due to microscopic defects that pin the vortices. Rather than having the vortices pinned randomly by defects, the approach of this research team is to pin them in a controlled way by creating patterns of nanoscopic holes within a thin film to which they attach. By introducing external electric and magnetic fields it should then be possible to move the vortices between the pinning sites in a controlled way. Such manipulations can, potentially, be used to either store data, perform calculations, or both, all within the same assembly of holes. Since vortices are inherently stable, being destroyed only at the edges of the film or on encountering an anti-vortex, the “information bits” they carry are secure. Furthermore, they can have sub micron dimensions and may respond on sub nanosecond time scales potentially facilitating high-speed, high density data processing. But vortices are also quantum mechanical in nature and this suggests the possibility they may be manipulated in a quantum mechanically coherent way by exploiting both quantum tunneling and superposition. Therefore, this project could lead to the development of devices for quantum information technology. The proposed project is in line with national goals to better understand and better exploit quantum phenomena. In addition, it will equip students with the expertise needed to join the work force of future industrial efforts to realize and exploit the principles and techniques established for quantum information technology.Technical abstractThis project aims to explore various quasi-static and dynamic properties of thin film vortices pinned on patterned holes in thin superconducting films. An external magnetic field perpendicular to the film will control the average flux density within the film, with special emphasis on strengths corresponding to an integer occupations. One class of experiments involves a search for resonant responses of vortices pinned on isolated holes, since displacement of the vortex center generates a restoring force. This project will in addition study the use of applied d.c. (or pulsed) currents, and in combination with oscillatory fields, to move vortices between neighboring pairs of holes, down a one-dimensional line of holes, or across a two dimensional array of holes, which should result in r.f./microwave emissions, the frequency of which is controlled by the hole spacing and the local current density. Application of an oscillatory current at the hopping frequency should produce Shapiro-like steps in the d.c transport characteristics. In the presence of quantum-tunneling between the neighboring potential wells, a single vortex pinned on the pair could distribute itself between the wells in a symmetric or antisymmetric manner from which two-state super-positions might be formed, which could be searched for spectroscopically. The manipulation of such vortices can be used as flux-flow oscillators, computer bits, or data storage elements. The phenomena to be examined, if realized, could, potentially, lead to new classes of super-conducting devices, all based on the manipulation of hole-pinned vortices. These include: i) various flux flow oscillators, a multi-bit flux line memory element, and iii) a possible qubit. Graduates of this program will be equipped to enter various industrial environments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
超导体可以无损耗地传输电流,同时也会产生磁场。然而,在某个临界场之上,磁通量通过形成超导电子的涡旋电流阵列(称为涡旋)进入超导体。这些涡旋的运动会破坏超导特性。高磁场磁铁避免了这个问题,由于微观缺陷,钉的漩涡。这个研究小组的方法不是让涡流随机地被缺陷固定,而是通过在它们附着的薄膜内创建纳米级孔的图案来以受控的方式固定它们。通过引入外部电场和磁场,应该可以以受控的方式在钉扎位置之间移动涡旋。这样的操作可以潜在地用于存储数据、执行计算或两者,所有这些都在相同的孔组件内。由于涡旋本身是稳定的,只有在胶片边缘或遇到反涡旋时才会被破坏,因此它们携带的“信息位”是安全的。此外,它们可以具有亚微米尺寸,并且可以在亚纳秒时间尺度上响应,从而潜在地促进高速、高密度数据处理。 但是涡旋在本质上也是量子力学的,这表明它们可能通过利用量子隧穿和叠加以量子力学相干的方式被操纵。因此,该项目可能会导致量子信息技术设备的开发。拟议的项目符合更好地理解和更好地利用量子现象的国家目标。此外,它将使学生具备所需的专业知识,加入未来的工业努力的劳动力,实现和利用的原则和技术建立的量子信息technology.Technical abstractionThis项目的目的是探索各种准静态和动态特性的薄膜涡旋钉扎在图案化的孔在薄超导薄膜。垂直于薄膜的外部磁场将控制薄膜内的平均通量密度,特别强调与整数占用相对应的强度。一类实验涉及到孤立的孔钉扎涡的共振响应的搜索,因为涡中心的位移产生的恢复力。本项目还将研究应用直流(或脉冲)电流的使用,并与振荡场相结合,以移动相邻孔对之间的涡流,沿着一维孔线,或穿过二维孔阵列,这将导致r.f./微波发射,其频率由孔间距和局部电流密度控制。在跳跃频率的振荡电流的应用程序应产生Shapiro样的步骤中的直流传输特性。在相邻的势威尔斯阱之间存在量子隧穿时,钉扎在势阱对上的单个涡旋可以以对称或反对称的方式在威尔斯阱之间分布,由此可能形成两态叠加,这可以通过光谱来搜索。这种涡旋的操纵可以用作通量流振荡器、计算机位或数据存储元件。待研究的现象,如果实现的话,可能会导致新的超导设备类别,所有这些都基于对孔钉扎涡旋的操纵。这些包括:i)各种通量流振荡器,多位通量线存储器元件,以及iii)可能的量子位。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Investigation of the Critical Currents in Thin-Film MoGe Devices
薄膜 MoGe 器件中临界电流的研究
  • DOI:
    10.1109/tasc.2023.3343324
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Nevirkovets, Ivan P.;Grudichak, Scott T.;Belogolovskii, Mikhail;Ketterson, John B.
  • 通讯作者:
    Ketterson, John B.
Temperature-dependent effect of modulation in graphene-supported metamaterials
  • DOI:
    10.1088/1367-2630/ac5dfa
  • 发表时间:
    2022-04-01
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Morozov,Yevhenii M.;Lapchuk,Anatoliy S.;Nevirkovets,Ivan P.
  • 通讯作者:
    Nevirkovets,Ivan P.
Josephson Junctions with Artificial Superparamagnetic Barrier: A Promising Avenue for Nanoscale Magnetometry
具有人工超顺磁势垒的约瑟夫森结:纳米级磁力测量的有前途的途径
  • DOI:
    10.1103/physrevapplied.14.014092
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Nevirkovets, Ivan P.;Belogolovskii, Mikhail A.;Ketterson, John B.
  • 通讯作者:
    Ketterson, John B.
Driven responses of periodically patterned superconducting films
周期性图案超导薄膜的驱动响应
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Al Luhaibi, A.;Glatz, A;Ketterson, J. B.
  • 通讯作者:
    Ketterson, J. B.
Magnetic Field Sensor Based on a Single Josephson Junction With a Multilayer Ferromagnet/Normal Metal Barrier
基于具有多层铁磁体/普通金属屏障的单约瑟夫森结的磁场传感器
  • DOI:
    10.1109/tasc.2021.3056039
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Nevirkovets, Ivan P.;Belogolovskii, Mikhail A.;Mukhanov, Oleg A.;Ketterson, John B.
  • 通讯作者:
    Ketterson, John B.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Ketterson其他文献

John Ketterson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Ketterson', 18)}}的其他基金

Collaborative Research: Controlled Disorder and Topological Defects in Magnetically Frustrated Thin Film Metamaterials
合作研究:磁阻薄膜超材料中的受控无序和拓扑缺陷
  • 批准号:
    1507058
  • 财政年份:
    2015
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
Collaborative Research: Size-effect driven nanoparticle ferromagnetism
合作研究:尺寸效应驱动的纳米颗粒铁磁性
  • 批准号:
    1508323
  • 财政年份:
    2015
  • 资助金额:
    $ 51万
  • 项目类别:
    Continuing Grant
IGERT: Quantum Coherent Optical and Matter Systems
IGERT:量子相干光学和物质系统
  • 批准号:
    0801685
  • 财政年份:
    2008
  • 资助金额:
    $ 51万
  • 项目类别:
    Continuing Grant
Collaborative Research: Collective Mode Spectroscopy in Unconventional Superconductors
合作研究:非常规超导体的集体模式光谱学
  • 批准号:
    0509357
  • 财政年份:
    2005
  • 资助金额:
    $ 51万
  • 项目类别:
    Continuing Grant
IMR: Acquisition of a Physical Property Measurement System for Research and Education
IMR:购买用于研究和教育的物理特性测量系统
  • 批准号:
    0415144
  • 财政年份:
    2004
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
SENSORS: Collaborative Research: Biochemical Sensors and Data Processing for Security Applications
传感器:协作研究:用于安全应用的生化传感器和数据处理
  • 批准号:
    0329957
  • 财政年份:
    2003
  • 资助金额:
    $ 51万
  • 项目类别:
    Continuing Grant
QuBIC: A Qubit Based on SINIS Josephson Tunnel Junctions
QuBIC:基于 SINIS 约瑟夫森隧道结的量子位
  • 批准号:
    0218652
  • 财政年份:
    2002
  • 资助金额:
    $ 51万
  • 项目类别:
    Continuing Grant
U.S.-Germany Cooperative Research: The Fabrication and Study of Discrete Josephson Transmission Lines with Over- damped Multilayered Superconducting Tunnel
美德合作研究:过阻尼多层超导隧道离散约瑟夫森输电线路的制作与研究
  • 批准号:
    9603236
  • 财政年份:
    1997
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
Collective Mode Studies in Superfluid Fermi Systems
超流体费米系统的集体模式研究
  • 批准号:
    9623682
  • 财政年份:
    1996
  • 资助金额:
    $ 51万
  • 项目类别:
    Continuing Grant
Multilayer Josephson Junction Digital Devices
多层约瑟夫森结数字器件
  • 批准号:
    9500279
  • 财政年份:
    1995
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant

相似国自然基金

响应磁场解锁纤维蛋白“knob-hole杵臼结构”的新型载药纳米粒子用于溶栓治疗的研究
  • 批准号:
    32000948
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于Bump-Hole化学遗传学技术的βIII微管蛋白的功能研究
  • 批准号:
    21907005
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
HOLE基因在肺癌发生中的作用
  • 批准号:
    2018JJ2666
  • 批准年份:
    2018
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
卤键、π-hole键功能化固相萃取吸附剂的设计、合成及其在生物体内多环芳烃DNA加合物检测中的应用
  • 批准号:
    81502851
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Cosmic powerhouses: The birth, death, and legacy of black hole jets
宇宙动力源:黑洞喷流的诞生、死亡和遗产
  • 批准号:
    DP240102970
  • 财政年份:
    2024
  • 资助金额:
    $ 51万
  • 项目类别:
    Discovery Projects
EPSRC-SFI: Developing a Quantum Bus for germanium hole-based spin qubits on silicon (GeQuantumBus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线 (GeQuantumBus)
  • 批准号:
    EP/X039889/1
  • 财政年份:
    2024
  • 资助金额:
    $ 51万
  • 项目类别:
    Research Grant
EPSRC-SFI: Developing a Quantum Bus for germanium hole based spin qubits on silicon (Quantum Bus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线(量子总线)
  • 批准号:
    EP/X040380/1
  • 财政年份:
    2024
  • 资助金额:
    $ 51万
  • 项目类别:
    Research Grant
Woods Hole Center for Oceans and Human Health
伍兹霍尔海洋与人类健康中心
  • 批准号:
    2418297
  • 财政年份:
    2024
  • 资助金额:
    $ 51万
  • 项目类别:
    Continuing Grant
Development of Efficient Black Hole Spectroscopy and a Desktop Cluster for Detecting Compact Binary Mergers
开发高效黑洞光谱和用于检测紧凑二元合并的桌面集群
  • 批准号:
    2412341
  • 财政年份:
    2024
  • 资助金额:
    $ 51万
  • 项目类别:
    Continuing Grant
Equipment: Woods Hole Oceanographic Institution 2023 OI Proposal
设备:伍兹霍尔海洋研究所 2023 年 OI 提案
  • 批准号:
    2313654
  • 财政年份:
    2023
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
The Seventeenth (17th) Graduate Climate Conference (GCC); Woods Hole, Massachusetts; November 2-4, 2023
第十七届(17th)气候研究生会议(GCC);
  • 批准号:
    2327558
  • 财政年份:
    2023
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
Radiation GRMHD with Non-Thermal Particle Acceleration: Next-Generation Models of Black Hole Accretion Flows and Jets
具有非热粒子加速的辐射 GRMHD:黑洞吸积流和喷流的下一代模型
  • 批准号:
    2307983
  • 财政年份:
    2023
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
Collaborative Research: Reverberation Mapping with Multi-Object Spectroscopy - from Sloan Digital Sky Survey Reverberation Mapping to the Black Hole Mapper
合作研究:使用多目标光谱进行混响映射 - 从斯隆数字巡天混响映射到黑洞映射器
  • 批准号:
    2310211
  • 财政年份:
    2023
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
CAREER: Direct Tests of Black Hole Accretion Rate Prescriptions
职业:黑洞吸积率处方的直接测试
  • 批准号:
    2239807
  • 财政年份:
    2023
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了