New Directions for Organic Spintronics: Organic-Based Magnetic Heterostructures and Microwave Magnetodynamics

有机自旋电子学的新方向:有机基磁性异质结构和微波磁动力学

基本信息

  • 批准号:
    1507775
  • 负责人:
  • 金额:
    $ 39.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-06-01 至 2018-05-31
  • 项目状态:
    已结题

项目摘要

Nontechnical Description: The push towards "ubiquitous computing," the inclusion of small-scale and low-power computing devices in everyday objects ranging from appliances, to clothing, to packaging, has emerged as a new driver that is pushing information technology off the desktop (or the laptop) and into every aspect of our world. The study of organic electronics is playing a major role in this new paradigm due to the mechanical flexibility, low cost, and ease of manufacturing enabled by these materials. Early signs of the success of this approach can be found in the commercial development of flexible display technologies based on organic light-emitting diodes and organic thin film transistors. However, this new technology is currently limited by the lack of non-volatile organic memory elements, i.e. the ability for a device to remember what it has been doing once the power is turned off. This project focuses on addressing this gap through the development of organic-based magnetic materials and the devices enabled by them. It is focused on developing the new materials, new devices, and new fundamental understanding necessary to translate the potential of these organic-based magnets into a realistic complement to the optical and electronic functionality already demonstrated for organic electronics. In addition, this project serves as training ground for the next generation of young researchers that will drive this evolving technical revolution. Recent graduates of the PI's group have moved on to positions at Samsung, Intel and science policy institutes, and current training has been integrated with Ohio State University's Masters to PhD Bridge Program to enhance the diversity of our future STEM workforce. In its first two years of operation this Bridge Program has already increased the students from underrepresented minorities in the Department of Physics by 400%.Technical Description: This project extends the boundaries of organic electronics to include magnetic and spintronic functionality. This effort exploits recent scientific and technical breakthroughs to explore the growth of all-organic magnetic heterostructures and investigate the dynamic excitation of organic-based magnetic materials in two independent but correlated thrusts. In Thrust 1, work focuses on determining the structure-function relationship between the growth of organic-based magnets and their static and microwave-frequency magnetic properties. This work includes the growth of ferromagnet/non-magnetic bilayers, ferromagnet/non-magnet/ferromagnet heterostructures, and corrugated films with shape-induced in-plane magnetic anisotropy. Thrust 2 focuses on exploring dynamic excitations of these systems, including the investigation of electrically detected ferromagnetic resonance, ferromagnetic resonance driven spin pumping detected both via ferromagnetic resonance linewidth changes and inverse spin-Hall effect generated voltages, and spin-transfer torque based on the spin-Hall effect in high spin-orbit metals for ferromagnet/metal bilayers. Taken together, these two Thrusts are laying the foundation for a new conception of microwave-frequency organic spintronics and magnetoelectronics.
非技术描述:推动“无处不在的计算”,即在日常用品中包括小规模和低功耗的计算设备,从电器到服装,再到包装,已经成为一个新的驱动力,正在推动信息技术离开台式机(或笔记本电脑),进入我们世界的各个方面。有机电子学的研究在这一新范式中发挥着重要作用,因为这些材料具有机械灵活性,低成本和易于制造。这种方法成功的早期迹象可以在基于有机发光二极管和有机薄膜晶体管的柔性显示技术的商业开发中找到。然而,这种新技术目前受到缺乏非易失性有机存储元件的限制,即设备在电源关闭后记住它一直在做什么的能力。该项目的重点是通过开发基于有机的磁性材料及其实现的设备来解决这一差距。它专注于开发新材料,新器件和新的基本理解,以将这些有机磁体的潜力转化为对有机电子已经证明的光学和电子功能的现实补充。此外,该项目还将成为下一代年轻研究人员的培训基地,他们将推动这场不断发展的技术革命。PI团队的应届毕业生已在三星、英特尔和科学政策研究所任职,目前的培训已与俄亥俄州州立大学的硕士到博士桥梁计划相结合,以增强我们未来STEM员工队伍的多样性。在其运作的头两年,这个桥梁计划已经增加了学生从物理系的代表性不足的少数民族400%.Technical描述:这个项目扩展了有机电子学的边界,包括磁性和自旋电子学功能。这一努力利用了最近的科学和技术突破,探索全有机磁性异质结构的生长,并研究有机磁性材料在两个独立但相关的推力中的动态激发。在推力1中,工作重点是确定有机基磁体的生长与其静态和微波频率磁性之间的结构-功能关系。这项工作包括铁磁/非磁性双层膜的生长,铁磁/非磁性/铁磁异质结构,和形状诱导的平面内磁各向异性的波纹膜。推力2的重点是探索这些系统的动态激发,包括电检测铁磁共振,铁磁共振驱动的自旋泵检测通过铁磁共振线宽变化和反自旋霍尔效应产生的电压,和自旋转移力矩的基础上的自旋霍尔效应在高自旋轨道金属铁磁/金属双层的调查。这两个方面的研究为微波频率有机自旋电子学和磁电子学的新概念奠定了基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ezekiel Johnston-Halperin其他文献

Membrane Tension Dictates the Spatiotemporal Heterogeneity of Endocytic Clathrin Coat Dynamics in Cells
  • DOI:
    10.1016/j.bpj.2017.11.1614
  • 发表时间:
    2018-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Nathan M. Willy;Joshua Ferguson;Scott Huber;Spencer Heidotting;Esra Aygun;Sarah Wurm;Ezekiel Johnston-Halperin;Michael Poirier;Comert Kural
  • 通讯作者:
    Comert Kural

Ezekiel Johnston-Halperin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ezekiel Johnston-Halperin', 18)}}的其他基金

NSF Convergence Accelerator- Track C: QuSTEAM: Convergent undergraduate education in Quantum Science, Technology, Engineering, Arts, and Mathematics
NSF 融合加速器 - 轨道 C:QuSTEAM:量子科学、技术、工程、艺术和数学领域的融合本科教育
  • 批准号:
    2134832
  • 财政年份:
    2021
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Cooperative Agreement
NSF Convergence Accelerator- Track C: QuSTEAM: Convergent Undergraduate Education in Quantum Science, Technology, Engineering, Arts, and Mathematics
NSF 融合加速器 - 轨道 C:QuSTEAM:量子科学、技术、工程、艺术和数学领域的融合本科教育
  • 批准号:
    2040581
  • 财政年份:
    2020
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
QII-TAQS: Solid State Integration of Molecular Qubits
QII-TAQS:分子量子位的固态集成
  • 批准号:
    1936219
  • 财政年份:
    2019
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: High-Q Magnon Crystals and Emergent Topological Phases
合作研究:高Q磁振子晶体和涌现拓扑相
  • 批准号:
    1808704
  • 财政年份:
    2018
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
EFRI NewLAW: Voltage-tuned, topologically-protected magnon states for low loss microwave devices and circuits
EFRI NewLAW:低损耗微波器件和电路的电压调谐、拓扑保护磁振子态
  • 批准号:
    1741666
  • 财政年份:
    2017
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
Electrical Spin Injection at Chemically Modified Organic/Inorganic Interfaces
化学改性有机/无机界面的电自旋注射
  • 批准号:
    1207243
  • 财政年份:
    2012
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Continuing Grant
MRI: Acquisition of a Hybrid Diamond/III-N Synthesis Cluster Tool
MRI:获得混合金刚石/III-N 合成簇工具
  • 批准号:
    0923215
  • 财政年份:
    2009
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
SGER: Sublithographic Patterning of Nanoscale Spintronic Devices
SGER:纳米级自旋电子器件的亚光刻图案化
  • 批准号:
    0721633
  • 财政年份:
    2007
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant

相似海外基金

New directions in piezoelectric phononic integrated circuits: exploiting field confinement (SOUNDMASTER)
压电声子集成电路的新方向:利用场限制(SOUNDMASTER)
  • 批准号:
    EP/Z000688/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Research Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
  • 批准号:
    2342244
  • 财政年份:
    2024
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
  • 批准号:
    2306378
  • 财政年份:
    2024
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
  • 批准号:
    2342245
  • 财政年份:
    2024
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
Manchester Metropolitan University and Future Directions CIC KTP 23_24 R3
曼彻斯特城市大学和未来方向 CIC KTP 23_24 R3
  • 批准号:
    10083223
  • 财政年份:
    2024
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Knowledge Transfer Network
Conference: Future Directions for Mathematics Education Research, Policy, and Practice
会议:数学教育研究、政策和实践的未来方向
  • 批准号:
    2342550
  • 财政年份:
    2024
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
  • 批准号:
    2306379
  • 财政年份:
    2024
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
CAREER: New directions in the study of zeros and moments of L-functions
职业:L 函数零点和矩研究的新方向
  • 批准号:
    2339274
  • 财政年份:
    2024
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Continuing Grant
Participant Support for Biomechanists Outlining New Directions Workshop (USA and Italy: BOND); Naples, Italy; 24-27 September 2023
生物力学专家概述新方向研讨会的参与者支持(美国和意大利:BOND);
  • 批准号:
    2314385
  • 财政年份:
    2023
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: New Directions and Approaches in Discrepancy Theory
合作研究:AF:小:差异理论的新方向和方法
  • 批准号:
    2327010
  • 财政年份:
    2023
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了