MRI: Acquisition of a Hybrid Diamond/III-N Synthesis Cluster Tool

MRI:获得混合金刚石/III-N 合成簇工具

基本信息

项目摘要

0923215Johnston-HalperinOhio State U. Res. Fdn.Technical Summary: Wide bandgap semiconductors, and in particular III-Ns and diamond, are emerging as a powerful force for innovation across a wide spectrum of science and technology. This breadth of potential is captured by the extraordinary diversity of the interdisciplinary team assembled for this proposal, with research interests ranging over 15 orders of magnitude in energy (from ~1 meV to ~ 1,000 TeV), 13 orders of magnitude in time (~ 100 fs to ~ 1 ms), and 11 orders of magnitude in length (from ~ 1 nm to ~ 10 cm). This diversity provides a unique and powerful opportunity, by optimizing a relatively modest set of material parameters: electron mobility, spin relaxation time, electron-hole recombination time and structural quality, it is possible to have a transformative impact across a truly broad front of leading edge research. This optimization will require the rapid development of these emerging materials, necessitating a tight coupling between high quality materials synthesis and precise materials characterization informed by a fundamental understanding of the science underlying these diverse applications. The collaborative network presented here, including the PIs and both on-site and off-site collaborators, posses the necessary expertise as well as the necessary infrastructure in materials characterization to exploit this unique opportunity; the only piece lacking is the appropriate infrastructure for materials synthesis. As a result, the acquisition of the hybrid diamond/III-N synthesis cluster tool proposed here will have an immediate impact on a wide spectrum of active research programs as well as providing interdisciplinary collaborations with the necessary infrastructure to successfully compete in this rapidly developing area of materials science. The proposed tool will consist of two growth chambers, one optimized for microwave-plasma chemical vapor deposition (MPCVD) of diamond films, and the other optimized for ammonia-based molecular beam epitaxy (MBE) of III-N epilayers. The chambers are linked by an air-free glove box and an ultra-high vacuum (UHV) transfer line, allowing for in situ sample transfer and high quality heterostructure growth. Finally, the diversity of this collaboration will lead directly to the training of graduate and undergraduate students who are optimally positioned to take advantage of increasingly interdisciplinary opportunities in both the academic and industrial workforce.Layman Summary: The objective of this project is to establish a materials fabrication facility to investigate the properties of new nanoscale materials based on diamond and III-N semiconductors. Wide bandgap semiconductors, and in particular III-Ns and diamond, are emerging as a powerful force for innovation across a wide spectrum of science and technology. Research in this area will benefit industries including magnetoelectronics/spintronics, high-speed electronics, solid state lighting, photovoltaics, and energy-efficient transportation. This breadth of potential is captured by the extraordinary diversity of the interdisciplinary team assembled for this proposal, with affiliations including Materials Science and Engineering, Electrical and Computer Engineering, Condensed Matter Physics and High Energy Physics and research interests ranging over 15 orders of magnitude in energy, 13 orders of magnitude in time and 11 orders of magnitude in length. For example, this variation is equivalent to temperatures from 10° C above absolute zero to 1 million times hotter than the sun, the difference in time between 1 millionth of a second and the age of the earth and sizes ranging from several atoms to the size of a cell phone. As a consequence, the acquisition of the hybrid diamond/III-N synthesis cluster tool proposed here will have an immediate impact on a wide spectrum of active research programs, laying the groundwork for fundamental discoveries and new technology and providing training for graduate and undergraduate students in emerging interdisciplinary applications of fundamental materials science research.
0923215Johnston-HalperinOhio State美国联邦调查局技术概述:宽带隙半导体,特别是III-Ns和金刚石,正在成为广泛的科学和技术创新的强大力量。这一潜力的广度被跨学科团队的非凡多样性所捕捉,他们的研究兴趣范围包括15个数量级的能量(从~ 1mev到~ 1000tev), 13个数量级的时间(~ 100fs到~ 1ms),以及11个数量级的长度(从~ 1nm到~ 10cm)。这种多样性提供了一个独特而强大的机会,通过优化一组相对适度的材料参数:电子迁移率,自旋弛豫时间,电子-空穴复合时间和结构质量,有可能在真正广泛的前沿研究中产生变革性的影响。这种优化将需要这些新兴材料的快速发展,需要高质量材料合成和精确材料表征之间的紧密耦合,这需要对这些不同应用背后的科学的基本理解。这里展示的合作网络,包括pi和现场和非现场合作者,拥有必要的专业知识和必要的材料表征基础设施,以利用这一独特的机会;唯一缺少的是适当的材料合成基础设施。因此,本文提出的混合金刚石/III-N合成簇工具的获得将对广泛的活跃研究计划产生直接影响,并提供跨学科合作和必要的基础设施,以成功地在这一快速发展的材料科学领域竞争。该工具将由两个生长室组成,一个优化用于微波等离子体化学气相沉积(MPCVD)金刚石薄膜,另一个优化用于氨基分子束外延(MBE) III-N涂层。这些腔室由无空气手套箱和超高真空(UHV)传输线连接,允许原位样品转移和高质量异质结构生长。最后,这种合作的多样性将直接导致研究生和本科生的培训,他们处于最佳位置,可以利用学术和工业劳动力中越来越多的跨学科机会。摘要:本项目的目标是建立一个材料制造设备,以研究基于金刚石和III-N半导体的新型纳米材料的性能。宽带隙半导体,特别是III-Ns和金刚石,正在成为广泛的科学和技术创新的强大力量。该领域的研究将有利于包括磁电子/自旋电子学、高速电子、固态照明、光伏和节能运输在内的行业。这种潜力的广度被跨学科团队的非凡多样性所捕获,这些团队包括材料科学与工程,电气与计算机工程,凝聚态物理和高能物理,研究兴趣范围超过15个数量级的能量,13个数量级的时间和11个数量级的长度。例如,这种变化相当于从绝对零度以上10°C到比太阳热100万倍的温度,相当于百万分之一秒和地球年龄之间的时间差异,大小从几个原子到手机大小不等。因此,本文提出的混合金刚石/III-N合成簇工具的获得将对广泛的活跃研究项目产生直接影响,为基础发现和新技术奠定基础,并为研究生和本科生提供基础材料科学研究新兴跨学科应用的培训。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ezekiel Johnston-Halperin其他文献

Membrane Tension Dictates the Spatiotemporal Heterogeneity of Endocytic Clathrin Coat Dynamics in Cells
  • DOI:
    10.1016/j.bpj.2017.11.1614
  • 发表时间:
    2018-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Nathan M. Willy;Joshua Ferguson;Scott Huber;Spencer Heidotting;Esra Aygun;Sarah Wurm;Ezekiel Johnston-Halperin;Michael Poirier;Comert Kural
  • 通讯作者:
    Comert Kural

Ezekiel Johnston-Halperin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ezekiel Johnston-Halperin', 18)}}的其他基金

NSF Convergence Accelerator- Track C: QuSTEAM: Convergent undergraduate education in Quantum Science, Technology, Engineering, Arts, and Mathematics
NSF 融合加速器 - 轨道 C:QuSTEAM:量子科学、技术、工程、艺术和数学领域的融合本科教育
  • 批准号:
    2134832
  • 财政年份:
    2021
  • 资助金额:
    $ 42.13万
  • 项目类别:
    Cooperative Agreement
NSF Convergence Accelerator- Track C: QuSTEAM: Convergent Undergraduate Education in Quantum Science, Technology, Engineering, Arts, and Mathematics
NSF 融合加速器 - 轨道 C:QuSTEAM:量子科学、技术、工程、艺术和数学领域的融合本科教育
  • 批准号:
    2040581
  • 财政年份:
    2020
  • 资助金额:
    $ 42.13万
  • 项目类别:
    Standard Grant
QII-TAQS: Solid State Integration of Molecular Qubits
QII-TAQS:分子量子位的固态集成
  • 批准号:
    1936219
  • 财政年份:
    2019
  • 资助金额:
    $ 42.13万
  • 项目类别:
    Continuing Grant
Collaborative Research: High-Q Magnon Crystals and Emergent Topological Phases
合作研究:高Q磁振子晶体和涌现拓扑相
  • 批准号:
    1808704
  • 财政年份:
    2018
  • 资助金额:
    $ 42.13万
  • 项目类别:
    Standard Grant
EFRI NewLAW: Voltage-tuned, topologically-protected magnon states for low loss microwave devices and circuits
EFRI NewLAW:低损耗微波器件和电路的电压调谐、拓扑保护磁振子态
  • 批准号:
    1741666
  • 财政年份:
    2017
  • 资助金额:
    $ 42.13万
  • 项目类别:
    Standard Grant
New Directions for Organic Spintronics: Organic-Based Magnetic Heterostructures and Microwave Magnetodynamics
有机自旋电子学的新方向:有机基磁性异质结构和微波磁动力学
  • 批准号:
    1507775
  • 财政年份:
    2015
  • 资助金额:
    $ 42.13万
  • 项目类别:
    Standard Grant
Electrical Spin Injection at Chemically Modified Organic/Inorganic Interfaces
化学改性有机/无机界面的电自旋注射
  • 批准号:
    1207243
  • 财政年份:
    2012
  • 资助金额:
    $ 42.13万
  • 项目类别:
    Continuing Grant
SGER: Sublithographic Patterning of Nanoscale Spintronic Devices
SGER:纳米级自旋电子器件的亚光刻图案化
  • 批准号:
    0721633
  • 财政年份:
    2007
  • 资助金额:
    $ 42.13万
  • 项目类别:
    Standard Grant

相似海外基金

MRI: Track 1 Acquisition of a Real-Time Hybrid Simulation Testing System for Cyber-Physical Research and Training
MRI:轨道 1 获取用于网络物理研究和培训的实时混合仿真测试系统
  • 批准号:
    2320379
  • 财政年份:
    2023
  • 资助金额:
    $ 42.13万
  • 项目类别:
    Standard Grant
MRI: Acquisition of Autonomous Plug-In Hybrid Vehicle Platform for Multidisciplinary Research and Education at the University of Michigan-Dearborn
MRI:收购密歇根大学迪尔伯恩分校用于多学科研究和教育的自主插电式混合动力汽车平台
  • 批准号:
    2214830
  • 财政年份:
    2022
  • 资助金额:
    $ 42.13万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a High Performance Hybrid Computer Cluster for Computational Modeling
MRI:获取用于计算建模的高性能混合计算机集群
  • 批准号:
    2117247
  • 财政年份:
    2021
  • 资助金额:
    $ 42.13万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Hybrid Quadrupole Orbitrap LC/MS System to Facilitate Trace Quantitation and Complex Mixture Analyses at the University of Alaska Anchorage
MRI:阿拉斯加大学安克雷奇分校购买混合四极 Orbitrap LC/MS 系统以促进痕量定量和复杂混合物分析
  • 批准号:
    2019123
  • 财政年份:
    2020
  • 资助金额:
    $ 42.13万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Hybrid Quadrupole Mass Spectrometer with an Ultra-High Pressure Chromatograph
MRI:购买带有超高压色谱仪的混合四极杆质谱仪
  • 批准号:
    1919422
  • 财政年份:
    2019
  • 资助金额:
    $ 42.13万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Hybrid Supercritical Chromatography, High-Pressure Chromatograph, Quadrupole-Time-of-Flight Mass Spectrometer (SFC/UHPLC Q-ToF/MS)
MRI:购买混合超临界色谱、高压色谱、四极杆飞行时间质谱仪 (SFC/UHPLC Q-ToF/MS)
  • 批准号:
    1828782
  • 财政年份:
    2018
  • 资助金额:
    $ 42.13万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a GC Hybrid Orbitrap High Resolution Tandem Mass Spectrometer for Environmental Science
MRI:购买用于环境科学的 GC 混合 Orbitrap 高分辨率串联质谱仪
  • 批准号:
    1828257
  • 财政年份:
    2018
  • 资助金额:
    $ 42.13万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Hybrid Real-Time Simulator for Real-Time Power Grid Simulations
MRI:获取用于实时电网仿真的混合实时模拟器
  • 批准号:
    1828066
  • 财政年份:
    2018
  • 资助金额:
    $ 42.13万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a 400 MHz Solid-State NMR Spectrometer Console for Advanced NMR Spectroscopy of Complex Organic and Hybrid Materials
MRI:购买 400 MHz 固态 NMR 波谱仪控制台,用于复杂有机和混合材料的高级 NMR 波谱分析
  • 批准号:
    1726346
  • 财政年份:
    2017
  • 资助金额:
    $ 42.13万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Hybrid CPU/GPU High Performance Computing Cluster for Research and Education at Lamar University
MRI:拉马尔大学采购用于研究和教育的混合 CPU/GPU 高性能计算集群
  • 批准号:
    1726500
  • 财政年份:
    2017
  • 资助金额:
    $ 42.13万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了