EFRI NewLAW: Voltage-tuned, topologically-protected magnon states for low loss microwave devices and circuits

EFRI NewLAW:低损耗微波器件和电路的电压调谐、拓扑保护磁振子态

基本信息

  • 批准号:
    1741666
  • 负责人:
  • 金额:
    $ 199.78万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-15 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

This project focuses on the development of voltage-controlled magnetic materials for low loss microwave devices and circuits, including isolators and circulators which are key components that allow one way signal propagation. A key innovation of this program is the use of an organic-based magnetic material to construct the microwave circuits, much in the same way that organic light-emitting diodes (OLEDs) have allowed new display technologies. This approach leverages existing infrastructure developed for commercial microwave magnetic devices. Given the critical role those devices play in wireless communication and information technology, the breadth and depth of the impact of this work will be significant. Additionally, this research program will form the foundation for broader efforts at increasing public engagement in science via local outreach activities that are designed to enhance diversity programs in STEM across the four participating university campuses (Colorado State University, University of Iowa, Ohio State University, and Yale University). This project focuses on the development of novel approaches to achieving/enhancing non-reciprocity in microwave devices. Specifically, we have defined two parallel and synergistic Tracks that exploit the existing infrastructure surrounding magnetic-based microwave devices as a springboard for the development of novel device architectures based on high-fidelity self-biased magnonic crystals (Track 1) and voltage-control via the Dzyaloshinskii-Moriya interaction (Track 2). In both of these architectures, topologically protected propagating states will be exploited to dramatically enhance non-reciprocity in microwave devices such as circulators, isolators, and non-reciprocal filters. These projects are critically enabled by a recent materials breakthrough in which thin films of a room temperature organic-based magnet have been shown to exhibit magnetic ordering temperatures of over 600 K, quality factors in excess of 8,000 for magnetic resonance, conformal and low temperature deposition, and materials stability under ambient conditions. These projects are individually impactful and collectively synergistic, providing multiple paths to technological advances that will transform the phase space for the design of non-reciprocal microwave devices.
该项目的重点是开发用于低损耗微波器件和电路的压控磁性材料,包括隔离器和环行器,它们是允许单向信号传播的关键部件。该计划的一个关键创新是使用有机磁性材料来构建微波电路,就像有机发光二极管(OLED)允许新的显示技术一样。这种方法利用了为商业微波磁器件开发的现有基础设施。考虑到这些设备在无线通信和信息技术中发挥的关键作用,这项工作的影响将具有广度和深度。此外,这项研究计划将形成更广泛的努力,通过当地的外展活动,旨在加强在四个参与大学校园(科罗拉多州立大学,爱荷华州大学,俄亥俄州州立大学和耶鲁大学)的STEM多样性计划,增加公众参与科学的基础。该项目的重点是开发新的方法来实现/增强微波器件的非互易性。具体来说,我们已经定义了两个并行和协同的轨道,利用现有的基础设施周围的磁性微波器件作为跳板,开发基于高保真自偏置磁振子晶体(轨道1)和电压控制通过Dzyaloshinskiii-Moriya相互作用(轨道2)的新型器件架构。在这两种架构中,拓扑保护的传播状态将被利用,以显着提高微波器件,如循环器,隔离器和非互易滤波器的非互易性。这些项目的关键是最近的材料突破,其中室温有机基磁体薄膜已被证明具有超过600 K的磁有序温度,磁共振,保形和低温沉积的质量因子超过8,000,以及在环境条件下的材料稳定性。这些项目具有单独的影响力和集体的协同作用,为技术进步提供了多种途径,这些技术进步将改变非互易微波器件设计的相空间。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Time-resolved study of nonlinear three-magnon processes in yttrium iron garnet films
钇铁石榴石薄膜中非线性三磁振子过程的时间分辨研究
  • DOI:
    10.1103/physrevb.99.024429
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Liu, H. J. Jason;Riley, Grant A.;Ordóñez-Romero, César L.;Kalinikos, Boris A.;Buchanan, Kristen S.
  • 通讯作者:
    Buchanan, Kristen S.
Electric-Field Control of Magnon Gaps in a Ferromagnet using a Spatially-Periodic Electric Field
  • DOI:
    10.1142/s2010324717400124
  • 发表时间:
    2017-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Glade Sietsema;Tian-shi Liu;M. Flatté
  • 通讯作者:
    Glade Sietsema;Tian-shi Liu;M. Flatté
Magnon-photon strong coupling for tunable microwave circulators
  • DOI:
    10.1103/physreva.101.043842
  • 发表时间:
    2019-12
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Na Zhu;Xu Han;Chang-ling Zou;Mingrui Xu;H. Tang
  • 通讯作者:
    Na Zhu;Xu Han;Chang-ling Zou;Mingrui Xu;H. Tang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ezekiel Johnston-Halperin其他文献

Membrane Tension Dictates the Spatiotemporal Heterogeneity of Endocytic Clathrin Coat Dynamics in Cells
  • DOI:
    10.1016/j.bpj.2017.11.1614
  • 发表时间:
    2018-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Nathan M. Willy;Joshua Ferguson;Scott Huber;Spencer Heidotting;Esra Aygun;Sarah Wurm;Ezekiel Johnston-Halperin;Michael Poirier;Comert Kural
  • 通讯作者:
    Comert Kural

Ezekiel Johnston-Halperin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ezekiel Johnston-Halperin', 18)}}的其他基金

NSF Convergence Accelerator- Track C: QuSTEAM: Convergent undergraduate education in Quantum Science, Technology, Engineering, Arts, and Mathematics
NSF 融合加速器 - 轨道 C:QuSTEAM:量子科学、技术、工程、艺术和数学领域的融合本科教育
  • 批准号:
    2134832
  • 财政年份:
    2021
  • 资助金额:
    $ 199.78万
  • 项目类别:
    Cooperative Agreement
NSF Convergence Accelerator- Track C: QuSTEAM: Convergent Undergraduate Education in Quantum Science, Technology, Engineering, Arts, and Mathematics
NSF 融合加速器 - 轨道 C:QuSTEAM:量子科学、技术、工程、艺术和数学领域的融合本科教育
  • 批准号:
    2040581
  • 财政年份:
    2020
  • 资助金额:
    $ 199.78万
  • 项目类别:
    Standard Grant
QII-TAQS: Solid State Integration of Molecular Qubits
QII-TAQS:分子量子位的固态集成
  • 批准号:
    1936219
  • 财政年份:
    2019
  • 资助金额:
    $ 199.78万
  • 项目类别:
    Continuing Grant
Collaborative Research: High-Q Magnon Crystals and Emergent Topological Phases
合作研究:高Q磁振子晶体和涌现拓扑相
  • 批准号:
    1808704
  • 财政年份:
    2018
  • 资助金额:
    $ 199.78万
  • 项目类别:
    Standard Grant
New Directions for Organic Spintronics: Organic-Based Magnetic Heterostructures and Microwave Magnetodynamics
有机自旋电子学的新方向:有机基磁性异质结构和微波磁动力学
  • 批准号:
    1507775
  • 财政年份:
    2015
  • 资助金额:
    $ 199.78万
  • 项目类别:
    Standard Grant
Electrical Spin Injection at Chemically Modified Organic/Inorganic Interfaces
化学改性有机/无机界面的电自旋注射
  • 批准号:
    1207243
  • 财政年份:
    2012
  • 资助金额:
    $ 199.78万
  • 项目类别:
    Continuing Grant
MRI: Acquisition of a Hybrid Diamond/III-N Synthesis Cluster Tool
MRI:获得混合金刚石/III-N 合成簇工具
  • 批准号:
    0923215
  • 财政年份:
    2009
  • 资助金额:
    $ 199.78万
  • 项目类别:
    Standard Grant
SGER: Sublithographic Patterning of Nanoscale Spintronic Devices
SGER:纳米级自旋电子器件的亚光刻图案化
  • 批准号:
    0721633
  • 财政年份:
    2007
  • 资助金额:
    $ 199.78万
  • 项目类别:
    Standard Grant

相似海外基金

EFRI-2DARE and NewLAW Grantees Meeting Workshop, San Diego, October 17-19, 2018
EFRI-2DARE 和 NewLAW 受资助者会议研讨会,圣地亚哥,2018 年 10 月 17 日至 19 日
  • 批准号:
    1849079
  • 财政年份:
    2018
  • 资助金额:
    $ 199.78万
  • 项目类别:
    Standard Grant
EFRI NewLAW: Topological acoustic metamaterials for programmable and high-efficiency one-way transport
EFRI NewLAW:用于可编程和高效单向传输的拓扑声学超材料
  • 批准号:
    1741618
  • 财政年份:
    2017
  • 资助金额:
    $ 199.78万
  • 项目类别:
    Standard Grant
EFRI NewLAW: Mid-infrared topological plasmon-polaritons with 2D materials
EFRI NewLAW:采用 2D 材料的中红外拓扑等离子激元
  • 批准号:
    1741660
  • 财政年份:
    2017
  • 资助金额:
    $ 199.78万
  • 项目类别:
    Standard Grant
EFRI NewLAW: Magnetic Field Free Magneto-optics and Chiral Plasmonics with Dirac Materials
EFRI NewLAW:采用狄拉克材料的无磁场磁光和手性等离子体
  • 批准号:
    1741673
  • 财政年份:
    2017
  • 资助金额:
    $ 199.78万
  • 项目类别:
    Standard Grant
EFRI NewLAW: Non-Reciprocal Wave Propagation Devices by Fermionic Emulation and Exceptional Point Physics
EFRI NewLAW:通过费米子仿真和异常点物理实现非互易波传播装置
  • 批准号:
    1741694
  • 财政年份:
    2017
  • 资助金额:
    $ 199.78万
  • 项目类别:
    Continuing Grant
EFRI NewLAW: CMOS-Compatible Electrically Controlled Nonreciprocal Light Propagation with 2D Materials
EFRI NewLAW:采用 2D 材料的 CMOS 兼容电控非互易光传播
  • 批准号:
    1741693
  • 财政年份:
    2017
  • 资助金额:
    $ 199.78万
  • 项目类别:
    Standard Grant
EFRI NewLAW: Non-reciprocity in Acoustic Systems with Nonlinear Hierarchical Internal Structure and Asymmetry
EFRI NewLAW:具有非线性分层内部结构和不对称性的声学系统中的非互易性
  • 批准号:
    1741565
  • 财政年份:
    2017
  • 资助金额:
    $ 199.78万
  • 项目类别:
    Standard Grant
GOALI: EFRI NewLaw: Non-reciprocal effects and Anderson localization of acoustic and elastic waves in periodic structures with broken P-symmetry of the unit cell
目标:EFRI 新定律:单胞 P 对称性破缺的周期性结构中声波和弹性波的非互易效应和安德森局域化
  • 批准号:
    1741677
  • 财政年份:
    2017
  • 资助金额:
    $ 199.78万
  • 项目类别:
    Standard Grant
EFRI NewLAW: Topological Mechanical Metamaterials Science
EFRI NewLAW:拓扑机械超材料科学
  • 批准号:
    1741685
  • 财政年份:
    2017
  • 资助金额:
    $ 199.78万
  • 项目类别:
    Standard Grant
EFRI NewLAW: Non-reciprocal, topologically protected propagation using atomically thin materials for nanoscale devices
EFRI NewLAW:使用原子级薄材料用于纳米级设备的非互易、拓扑保护传播
  • 批准号:
    1741691
  • 财政年份:
    2017
  • 资助金额:
    $ 199.78万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了