QII-TAQS: Solid State Integration of Molecular Qubits

QII-TAQS:分子量子位的固态集成

基本信息

  • 批准号:
    1936219
  • 负责人:
  • 金额:
    $ 199.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Quantum information science has the potential to revolutionize entire sectors of our economy, from computation, to sensing, to communications. Exciting early steps along this path include: i) the demonstration of arrays of quantum bits, "qubits", that can perform computational tasks and are on the verge of demonstrating the ability to outperform classical computers, ii) the development of nanoscale quantum sensors that allow for measurement of everything ranging from electric and magnetic fields to single photons, and iii) the development of "flying qubits" (tiny packets of light that travel through fiber optic cables) that are already enabling the implementation of quantum encryption that is un-hackable using current technology. The promise, however, rests on the development of systems that exhibit the exact quantum properties necessary to make a good computer, sensor, etc. Chemists have been manipulating atomic states for centuries in the design and synthesis of new molecules - making molecules prime candidates for the design of customized qubits and quantum systems. Early experiments have shown that this approach has promise, but the challenge is to get these molecules out of the beaker (so to speak) and onto a chip so that they can be connected to other supporting technologies. This project focuses on studying candidate molecules in these device-like environments, with the goal of learning the "design rules" for molecular quantum systems and designing new approaches to initialize and measure (write and read) quantum information. This work will take place in a collaborative network involving university scientists in the US and abroad as well as close contact with industrial partners interested in building the "quantum infrastructure" that will be necessary to support the emergence of quantum information sciences. This interdisciplinary environment will provide unique training opportunities for undergraduates, graduate students, and postdoctoral researchers in the development of a quantum workforce. This project will develop a general framework for the integration of molecular spin-based qubits into solid state architectures, harnessing the ability to tune quantum states in molecular systems via synthetic control of ligand fields and electron-nuclear spin coupling to demonstrate a unique approach to generating qubits-by-design. Both electron and nuclear spin qubits have been demonstrated in molecular systems with appropriately engineered ligands. This performance is comparable to other leading qubit systems based on diamond NV centers, silicon donors, and Josephson junctions, and enables chemical tuning to tailor the coherence properties for particular applications. However, the field has thus far relied on measurements of large ensembles in solution, precluding the study of single-qubit properties and impeding scaling and integration with existing and emerging quantum technologies. Addressing this challenge requires an interdisciplinary program that exploits a framework of spin-dynamical theory and modeling to bridge from the synthesis of chemical qubits, to the validation of their quantum coherent properties, to the ultimate goal of quantum coherent device engineering. This project will explore how the requirements of quantum functionality intersect with the phase spaces accessible to molecular design and synthesis at one extreme and device design and fabrication at the other. As it matures, this framework will develop into a roadmap for the design of molecule-based quantum-functional devices that will be of broad relevance to the quantum information community and provide guidance as to how molecule-based quantum devices might be most effectively integrated into larger quantum-functional architectures. This project is jointly funded by Quantum Leap Big Idea Program, the Division of Chemistry in the Mathematical and Physical Sciences Directorate, and the Office of International Science and Engineering.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子信息科学有可能彻底改变我们经济的整个部门,从计算到传感,再到通信。在这条道路上,令人兴奋的早期步骤沿着包括:i)量子比特(qubit)阵列的演示,“qubit”,其可以执行计算任务,并且即将演示优于经典计算机的能力,ii)纳米级量子传感器的开发,其允许测量从电场和磁场到单光子的一切,以及iii)“飞行量子比特”(通过光纤电缆传播的微小光包)的开发,这些量子比特已经能够实现使用当前技术无法破解的量子加密。然而,这一前景取决于开发出具有精确量子特性的系统,这些量子特性是制造良好计算机、传感器等所必需的。化学家们在设计和合成新分子方面已经操纵了几个世纪的原子状态,使分子成为定制量子比特和量子系统设计的主要候选者。早期的实验表明,这种方法是有希望的,但挑战是将这些分子从烧杯中取出(可以这么说)并放在芯片上,以便它们可以连接到其他支持技术。该项目的重点是在这些类似设备的环境中研究候选分子,目标是学习分子量子系统的“设计规则”,并设计新的方法来初始化和测量(写入和读取)量子信息。这项工作将在一个涉及美国和国外大学科学家的合作网络中进行,并与有兴趣建立“量子基础设施”的工业合作伙伴密切联系,这对支持量子信息科学的出现是必要的。这种跨学科的环境将为本科生,研究生和博士后研究人员提供独特的培训机会,以发展量子劳动力。该项目将开发一个通用框架,用于将基于分子自旋的量子位集成到固态架构中,利用通过配体场和电子-核自旋耦合的合成控制来调节分子系统中量子态的能力,以展示一种独特的方法来生成量子位通过设计。电子和核自旋量子比特都已在具有适当工程配体的分子系统中得到证实。这种性能与基于金刚石NV中心、硅施主和约瑟夫森结的其他领先量子位系统相当,并且能够进行化学调谐以针对特定应用定制相干特性。然而,到目前为止,该领域一直依赖于对溶液中大集合的测量,排除了对单量子比特特性的研究,并阻碍了与现有和新兴量子技术的扩展和集成。解决这一挑战需要一个跨学科的计划,利用自旋动力学理论和建模的框架,从化学量子位的合成,到量子相干特性的验证,再到量子相干器件工程的最终目标。该项目将探索量子功能的要求如何与分子设计和合成的相空间相交,另一方面是器件设计和制造。随着它的成熟,这个框架将发展成为基于分子的量子功能器件设计的路线图,这将与量子信息社区具有广泛的相关性,并为基于分子的量子器件如何最有效地集成到更大的量子功能架构中提供指导。该项目由Quantum Leap Big Idea Program、数学和物理科学理事会化学部以及国际科学与工程办公室共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Scalable Synthesis of Monolayer Hexagonal Boron Nitride on Graphene with Giant Bandgap Renormalization
利用巨带隙重正化在石墨烯上可规模化合成单层六方氮化硼
  • DOI:
    10.1002/adma.202201387
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    29.4
  • 作者:
    Wang, Ping;Lee, Woncheol;Corbett, Joseph P.;Koll, William H.;Vu, Nguyen M.;Laleyan, David Arto;Wen, Qiannan;Wu, Yuanpeng;Pandey, Ayush;Gim, Jiseok
  • 通讯作者:
    Gim, Jiseok
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ezekiel Johnston-Halperin其他文献

Membrane Tension Dictates the Spatiotemporal Heterogeneity of Endocytic Clathrin Coat Dynamics in Cells
  • DOI:
    10.1016/j.bpj.2017.11.1614
  • 发表时间:
    2018-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Nathan M. Willy;Joshua Ferguson;Scott Huber;Spencer Heidotting;Esra Aygun;Sarah Wurm;Ezekiel Johnston-Halperin;Michael Poirier;Comert Kural
  • 通讯作者:
    Comert Kural

Ezekiel Johnston-Halperin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ezekiel Johnston-Halperin', 18)}}的其他基金

NSF Convergence Accelerator- Track C: QuSTEAM: Convergent undergraduate education in Quantum Science, Technology, Engineering, Arts, and Mathematics
NSF 融合加速器 - 轨道 C:QuSTEAM:量子科学、技术、工程、艺术和数学领域的融合本科教育
  • 批准号:
    2134832
  • 财政年份:
    2021
  • 资助金额:
    $ 199.91万
  • 项目类别:
    Cooperative Agreement
NSF Convergence Accelerator- Track C: QuSTEAM: Convergent Undergraduate Education in Quantum Science, Technology, Engineering, Arts, and Mathematics
NSF 融合加速器 - 轨道 C:QuSTEAM:量子科学、技术、工程、艺术和数学领域的融合本科教育
  • 批准号:
    2040581
  • 财政年份:
    2020
  • 资助金额:
    $ 199.91万
  • 项目类别:
    Standard Grant
Collaborative Research: High-Q Magnon Crystals and Emergent Topological Phases
合作研究:高Q磁振子晶体和涌现拓扑相
  • 批准号:
    1808704
  • 财政年份:
    2018
  • 资助金额:
    $ 199.91万
  • 项目类别:
    Standard Grant
EFRI NewLAW: Voltage-tuned, topologically-protected magnon states for low loss microwave devices and circuits
EFRI NewLAW:低损耗微波器件和电路的电压调谐、拓扑保护磁振子态
  • 批准号:
    1741666
  • 财政年份:
    2017
  • 资助金额:
    $ 199.91万
  • 项目类别:
    Standard Grant
New Directions for Organic Spintronics: Organic-Based Magnetic Heterostructures and Microwave Magnetodynamics
有机自旋电子学的新方向:有机基磁性异质结构和微波磁动力学
  • 批准号:
    1507775
  • 财政年份:
    2015
  • 资助金额:
    $ 199.91万
  • 项目类别:
    Standard Grant
Electrical Spin Injection at Chemically Modified Organic/Inorganic Interfaces
化学改性有机/无机界面的电自旋注射
  • 批准号:
    1207243
  • 财政年份:
    2012
  • 资助金额:
    $ 199.91万
  • 项目类别:
    Continuing Grant
MRI: Acquisition of a Hybrid Diamond/III-N Synthesis Cluster Tool
MRI:获得混合金刚石/III-N 合成簇工具
  • 批准号:
    0923215
  • 财政年份:
    2009
  • 资助金额:
    $ 199.91万
  • 项目类别:
    Standard Grant
SGER: Sublithographic Patterning of Nanoscale Spintronic Devices
SGER:纳米级自旋电子器件的亚光刻图案化
  • 批准号:
    0721633
  • 财政年份:
    2007
  • 资助金额:
    $ 199.91万
  • 项目类别:
    Standard Grant

相似国自然基金

北半球历史生物地理学问题探讨:基于RAD taqs方法的紫荆属亲缘地理学研究
  • 批准号:
    31470312
  • 批准年份:
    2014
  • 资助金额:
    85.0 万元
  • 项目类别:
    面上项目

相似海外基金

QuSeC-TAQS: Nanodiamond Quantum Sensing for Four-Dimensional Live-Cell Imaging
QuSeC-TAQS:用于四维活细胞成像的纳米金刚石量子传感
  • 批准号:
    2326628
  • 财政年份:
    2023
  • 资助金额:
    $ 199.91万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Sensing-Intelligence on The Move: Quantum-Enhanced Optical Diagnosis of Crop Diseases
QuSeC-TAQS:移动中的传感智能:农作物病害的量子增强光学诊断
  • 批准号:
    2326746
  • 财政年份:
    2023
  • 资助金额:
    $ 199.91万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Development of Quantum Sensors with Helium-4 using 2D Materials
QuSeC-TAQS:使用 2D 材料开发 Helium-4 量子传感器
  • 批准号:
    2326801
  • 财政年份:
    2023
  • 资助金额:
    $ 199.91万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
  • 批准号:
    2326840
  • 财政年份:
    2023
  • 资助金额:
    $ 199.91万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Entanglement- Enhanced Multiphoton Fluorescence Imaging of in Vivo Neural Function
QuSeC-TAQS:体内神经功能的纠缠增强多光子荧光成像
  • 批准号:
    2326758
  • 财政年份:
    2023
  • 资助金额:
    $ 199.91万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Novel Quantum Algorithms for Optical Atomic Clocks
QuSeC-TAQS:用于光学原子钟的新型量子算法
  • 批准号:
    2326810
  • 财政年份:
    2023
  • 资助金额:
    $ 199.91万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Optically Hyperpolarized Quantum Sensors in Designer Molecular Assemblies
QuSeC-TAQS:设计分子组件中的光学超极化量子传感器
  • 批准号:
    2326838
  • 财政年份:
    2023
  • 资助金额:
    $ 199.91万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Driving Advances in Magnetic Materials and Devices with Quantum Sensing of Magnons
QuSeC-TAQS:利用磁振子量子传感推动磁性材料和器件的进步
  • 批准号:
    2326528
  • 财政年份:
    2023
  • 资助金额:
    $ 199.91万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Quantum Sensing Platform for Biomolecular Analytics
QuSeC-TAQS:用于生物分子分析的量子传感平台
  • 批准号:
    2326748
  • 财政年份:
    2023
  • 资助金额:
    $ 199.91万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Nanoscale Covariance Magnetometry with Diamond Quantum Sensors
QuSeC-TAQS:采用金刚石量子传感器的纳米级协方差磁力测量
  • 批准号:
    2326767
  • 财政年份:
    2023
  • 资助金额:
    $ 199.91万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了