I-Corps: Plasma enhanced electrochemical capacitors
I-Corps:等离子体增强电化学电容器
基本信息
- 批准号:1507905
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-12-01 至 2016-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The widespread use of portable electronic devices, e.g., smart phones, and other wireless devices, relies on durable electrical energy storage devices as well as rapid energy delivery. While significant effort and development is underway to improve the energy capacity of batteries which provide such energy, a major issue with the related technology is the relatively poor capability and rate at which at which the energy can be provided. This is reflected for example, in the rapid draining of the battery, e.g., when flash photography is used. Electrochemical capacitors (ECs) constitute a new class of devices that may be used to efficiently produce rapid spurts of electrical power and constitute the topic of discussion in the proposed work. The goals of the project are aimed at alleviating a major issue of presently used ECs, which is that while energy can definitely be supplied in a short time span, the quantity of energy is typically very small. The successful completion of the project, followed by a wide implementation of high energy density ECs will then have a major technological impact. The energy enhanced ECs could be used broadly, (a) in wireless applications and mobile phones, (b) for consumer use, such as e-gift cards and digital cameras, e.g., as flashes in mobile phones, as well as (c) in larger scale utilities, incorporating medical devices, automotive applications, etc. The project aims towards a large societal and environmental impact, e.g., the deployment of electric vehicles could be further accelerated through the use of ECs, which provide sustained acceleration with reduced burden on the battery. The improved capacitance and concomitant energy density would lead to the wider deployment of the ECs, with the potential to even substitute for batteries. The proposed work involves the application of innovative methods to enhance the energy density of the ECs, through the addition of electrical charges introduced through carefully controlled plasma processing. Moreover, charge introduction can enhance the constituent nanocarbon capacitance through exploiting pseudocapacitive contributions in addition to the nominal double-layer charge accumulation. In preliminary experiments, a three-fold enhancement of the capacitance was observed, which lends credence to the hypotheses related to enhanced charge density. Based on these principles, a prototype EC device was constructed in the PI's laboratory. While the initial proof of principle was shown through relatively well controlled nanostructures, e.g., graphene or carbon nanotubes, it is proposed to extend the principles to more widely used nanocarbons such as activated carbon (AC). A large commercial impact would accrue from the fabrication of higher energy density electrodes in the ECs, through relatively cheap industrial scale plasma processing. The close interactions with capacitor manufacturers and with the EC industry would give the team the opportunity to understand issues involved in device manufacture and foster creative engineering attitudes. Several constituent components of the net charge density, incorporating the electrostatic capacitance (e.g., space charge, double-layer, etc.) as well as the quantum capacitance effects would be clarified with respect to their utility in commercial scale ECs.
便携式电子设备的广泛使用,智能电话和其它无线设备依赖于耐用的电能存储设备以及快速的能量输送。虽然正在进行显著的努力和开发以提高提供这种能量的电池的能量容量,但是相关技术的主要问题是相对差的能力和可以提供能量的速率。例如,这反映在电池的快速消耗中,例如,当使用闪光摄影时。 电化学电容器(EC)构成了一类新的设备,可用于有效地产生快速的电力喷射,并构成了拟议工作中讨论的主题。该项目的目标旨在缓解目前使用的EC的主要问题,即虽然可以在短时间内提供能量,但能量的数量通常非常小。该项目的成功完成以及高能量密度EC的广泛实施将产生重大的技术影响。能量增强的EC可以广泛地用于(a)无线应用和移动的电话,(B)消费者使用,例如电子礼品卡和数码相机,作为移动的电话中的闪光灯,以及(c)在更大规模的公用事业中,包括医疗设备、汽车应用等。该项目旨在产生巨大的社会和环境影响,例如,通过使用EC可以进一步加速电动车辆的部署,EC提供持续的加速,同时减少电池的负担。改进的电容和随之而来的能量密度将导致EC的更广泛部署,甚至有可能取代电池。 拟议的工作涉及创新方法的应用,以提高EC的能量密度,通过添加电荷通过仔细控制等离子体处理引入。此外,除了名义上的双层电荷积累之外,电荷引入还可以通过利用赝电容贡献来增强纳米碳成分的电容。在初步实验中,观察到电容的三倍增强,这使得与增强的电荷密度相关的假设变得可信。基于这些原理,在PI的实验室中构建了一个原型EC装置。虽然最初的原理证明是通过相对良好控制的纳米结构显示的,例如,尽管本发明涉及石墨烯或碳纳米管,但提出将原理扩展到更广泛使用的纳米碳,例如活性碳(AC)。通过相对便宜的工业规模等离子体处理,在EC中制造更高能量密度的电极将产生巨大的商业影响。与电容器制造商和EC行业的密切互动将使团队有机会了解设备制造中涉及的问题,并培养创造性的工程态度。结合静电电容的净电荷密度的几个组成成分(例如,空间电荷、双层等)以及量子电容效应将澄清关于它们在商业规模EC中的效用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Prabhakar Bandaru其他文献
Investigating pressure and solvent effects in Langmuir–Blodgett deposited ferroelectric thin films
- DOI:
10.1557/s43578-025-01538-2 - 发表时间:
2025-02-04 - 期刊:
- 影响因子:2.900
- 作者:
Pranjali Khajanji;Shreyam Natani;Prabhakar Bandaru - 通讯作者:
Prabhakar Bandaru
Prabhakar Bandaru的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Prabhakar Bandaru', 18)}}的其他基金
Heat transfer processes in patterned and rough microchannels
图案化和粗糙微通道中的传热过程
- 批准号:
1606192 - 财政年份:2016
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
CAREER: Nonlinear Carbon Nanotube and Nanowire Morphologies for Unique Nanoelectronics
职业:独特纳米电子学的非线性碳纳米管和纳米线形态
- 批准号:
0643761 - 财政年份:2007
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
NER: Nano-Electronic Components Based on Carbon Nanotube Y-Junctions
NER:基于碳纳米管 Y 形结的纳米电子元件
- 批准号:
0508514 - 财政年份:2005
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
相似国自然基金
旁轴式plasma-pulsed MIG复合焊电弧、熔滴、贯穿小孔和熔池的耦合机理
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Probing quark gluon plasma by heavy quarks in heavy-ion collisions
- 批准号:11805087
- 批准年份:2018
- 资助金额:30.0 万元
- 项目类别:青年科学基金项目
相似海外基金
PAPIER - Plasma Assisted Printing of Metal Inks with Enhanced Resistivity
PAPIER - 具有增强电阻率的金属油墨的等离子辅助印刷
- 批准号:
EP/Y001877/1 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Research Grant
Plasma-enhanced chemical vapor deposition tool
等离子体增强化学气相沉积工具
- 批准号:
520256500 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Major Research Instrumentation
Plasma-surface interaction in plasma-enhanced atomic-layer deposition of two-dimensional materials
二维材料等离子体增强原子层沉积中的等离子体-表面相互作用
- 批准号:
23KF0049 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Microporous structure tuning and ultrathin film formation via atmospheric-pressure plasma-enhanced CVD for the development of highly permselective silica membranes
通过大气压等离子体增强 CVD 进行微孔结构调整和超薄膜形成,用于开发高选择性渗透二氧化硅膜
- 批准号:
22H01851 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Micro/Nanobubble-Enhanced Cold Plasma Activation of Water
微/纳米气泡增强冷等离子体活化水
- 批准号:
571340-2021 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Alliance Grants
Decentralised Ammonia production from Renewable Energy utilising novel sorption-enhanced plasma-catalytic Power-to-X technology
利用新型吸附增强等离子体催化 Power-to-X 技术从可再生能源中分散生产氨
- 批准号:
10055396 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
EU-Funded
Forntier of plasma-enhanced biorefinery science using stable isotopes
使用稳定同位素的等离子体增强生物精炼科学前沿
- 批准号:
22H01213 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Plasma-enhanced Electrostatic Precipitation of Diesel Particulates using High Voltage Nanosecond Pulses
合作研究:使用高压纳秒脉冲对柴油颗粒进行等离子体增强静电沉淀
- 批准号:
2112898 - 财政年份:2021
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: Plasma-enhanced Electrostatic Precipitation of Diesel Particulates using High Voltage Nanosecond Pulses
合作研究:使用高压纳秒脉冲对柴油颗粒进行等离子体增强静电沉淀
- 批准号:
2112881 - 财政年份:2021
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Controlling Naturally-Derived Polymer Enzymatic Degradation: A Plasma-Enhanced Chemical Vapor Deposition Approach
控制天然聚合物酶降解:等离子体增强化学气相沉积方法
- 批准号:
10654781 - 财政年份:2021
- 资助金额:
$ 5万 - 项目类别: