OP: Hybrid Silicon-Vanadium Dioxide Resonators for Tbps Optical Communication
OP:用于 Tbps 光通信的混合硅-钒氧化物谐振器
基本信息
- 批准号:1509740
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract TitleHybrid Silicon-Vanadium Dioxide Modulators for Record High Speed Optical CommunicationAbstractNontechnical:It is increasingly difficult to raise computational processing speed simply by adding more transistors because feature sizes are approaching atomic dimensions, power and heat dissipation are problematic in small volumes, and bottlenecks in on-chip communication slow down data transfer. Among the most promising routes to significantly faster processing speeds is using light pulses to carry digital data. High-speed, low-power optical modulators that can encode signals in light are essential if computers are to achieve THz-scale processing using light on silicon chips. However, due to their intrinsic physical properties, all-silicon optical modulators cannot achieve signal modulation at such a high speed. In this project, hybrid silicon-vanadium dioxide optical modulators on a silicon chip are investigated for THz-speed modulation of light. Fundamental insights on the ultrafast behavior and intrinsic materials properties of the switching mechanism - the insulator-to-metal transition in vanadium dioxide - will also be developed in the project. Participating students will do cutting-edge research at the intersection of nanotechnology, physics, engineering, and materials science. Faculty and graduate students will share their enthusiasm for science, technology, engineering, and mathematics with middle and high school students in Metro Nashville and surrounding rural Tennessee counties by participating in successful outreach programs already established at Vanderbilt.Technical:High-speed, low-power optical modulators are essential to the future of silicon photonics as the solution to ultrafast communication. The goal of this project is to reach switching speeds of at least 500 GHz with an expenditure of 100 fJ/switch in hybrid silicon:vanadium dioxide photonics devices by exploiting the ultrafast insulator-to-metal transition of vanadium dioxide. The hybrid devices will also be used to probe the strong electron correlations that underlie the optically induced insulator-to-metal dynamics in vanadium dioxide. The specific objectives of the research are to: (1) fabricate hybrid silicon:vanadium dioxide photonic components and compare the switching speed of the optically and electro-optically induced phase transition in vanadium dioxide; (2) benchmark device performance against state-of-the-art simulations to learn how the phase change in vanadium dioxide controls the mode structure of optical pulses in the devices; and (3) measure the time-dependent dielectric function of vanadium dioxide in the telecommunications band by interferometric monitoring of the phase and amplitudes of optical pulses in Mach-Zehnder geometries. The intellectual merit at the heart of the project lies in its ambition to understand and exploit the ultrafast dynamics of the phase transition of vanadium dioxide near 1500 nm. The technological challenge is to demonstrate 500 GHz switching speeds in hybrid silicon:vanadium dioxide structures with micron-scale footprints using ultrafast lasers in the telecom band to initiate the phase transition of vanadium dioxide. This will require careful optical engineering to ensure low injection loss between the laser pump and the hybrid phase-changing structure. Demonstrating that the optically induced, ultrafast phase transition in VO2 can be harnessed in a practical, silicon-device-compatible architecture and processing regime would be a transformational step toward on-chip THz-scale processing. The project is inherently interdisciplinary, training students in optical science and engineering, silicon photonics, materials science, and advanced computational techniques. Project participants will engage in well-established science and technology outreach programs targeting middle and high school students in both Nashville city public schools and rural counties in middle Tennessee.
用于创纪录的高速光学通信的二氧化硅二氧化硅调制器的抽象标题Hybrid硅葡萄剂:越来越难以通过添加更多的晶体管来提高计算处理速度,因为特征大小接近原子量的尺寸,功率和热量消耗在少量的量中是有问题的,并且在量化速度方面会降低数据的速度传播。 在处理速度更快的最有希望的路线之一是使用光脉冲携带数字数据。 如果计算机要使用硅芯片上的光进行THZ尺度处理,则可以在光线中编码信号的高速低功能光学调节器至关重要。 但是,由于其内在的物理特性,全硅光学调制器无法在如此高速下实现信号调制。 在该项目中,研究了硅芯片上的杂种硅 - 二氧化碳光学调节剂,以进行光的速度调节。 对开关机制的超快行为和内在材料特性的基本见解 - 二氧化钒中的绝缘体到金属过渡 - 也将在项目中开发。 参与的学生将在纳米技术,物理,工程和材料科学的交集上进行尖端研究。 教师和研究生将通过参与已经在范德比尔特(Vanderbilt)建立的成功外展计划,与中的田纳西州大都会县的中学和高中生分享他们对科学,技术,工程和数学的热情。高速,低功率光学调节剂对Silicon Photonics的未来解决方案至关重要。 该项目的目的是通过利用超快绝缘子到金属的二氧化碳过渡,至少达到至少500 GHz的开关速度,而杂种硅的支出为100 fj/switch。 杂种设备还将用于探测二氧化钒中光学诱导的绝缘体对金属动力学的强大电子相关性。 该研究的特定目标是:(1)捏造杂化硅:二氧化钒光子成分,并比较二氧化钒中光学和电诱导的光和电诱导的相变的开关速度; (2)针对最先进的模拟的基准设备性能,以了解二氧化钒的相位变化如何控制设备中光脉冲的模式结构; (3)通过对马赫 - 齐汉几何形状中光脉冲的相位监测和光脉冲的振幅来测量电信带中二氧化钒的时代介电功能。该项目核心的智力优点在于其雄心勃勃的雄心勃勃,以了解和利用1500 nm附近二氧化钒的相过渡的超快动态。 技术挑战是在混合硅中证明500 GHz开关速度:使用电信频带中超快激光器的微米尺度足迹的二氧化钒结构,以启动二氧化钒的相变。 这将需要仔细的光学工程,以确保激光泵与混合相变结构之间的低注入损失。 证明可以在实用的,硅兼容兼容的架构和加工状态中利用vo2中光学诱导的超快相变,这将是朝着芯片thz尺度处理的转变步骤。 该项目本质上是跨学科的,是光学科学和工程学,硅光子学,材料科学和高级计算技术的培训。 项目参与者将在田纳西州纳什维尔市公立学校和农村县的中学学生和高中学生中参与成熟的科学技术外展计划。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sharon Weiss其他文献
Modulation of distinct isoforms of L-type calcium channels by Gq-coupled receptors in Xenopus oocytes
爪蟾卵母细胞中 Gq 偶联受体对 L 型钙通道不同亚型的调节
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Sharon Weiss;T. Keren;Shimrit Oz;Adva Ben;H. Haase;N. Dascal - 通讯作者:
N. Dascal
Molecular Aspects of Modulation of L-type Calcium Channels by Protein Kinase C.
蛋白激酶 C 调节 L 型钙通道的分子方面。
- DOI:
10.2174/1874467208666150507094733 - 发表时间:
2015 - 期刊:
- 影响因子:2.7
- 作者:
Sharon Weiss;N. Dascal - 通讯作者:
N. Dascal
Modulation of distinct isoforms of L-type calcium channels by G(q)-coupled receptors in Xenopus oocytes: antagonistic effects of Gβγ and protein kinase C.
爪蟾卵母细胞中 G(q) 偶联受体对 L 型钙通道不同亚型的调节:Gβγ 和蛋白激酶 C 的拮抗作用。
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:3.3
- 作者:
Sharon Weiss;T. Keren;Shimrit Oz;Adva Ben Mocha;H. Haase;N. Dascal - 通讯作者:
N. Dascal
Sharon Weiss的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sharon Weiss', 18)}}的其他基金
Porous silicon on paper-based optical biosensor for diagnostics
用于诊断的纸基光学生物传感器上的多孔硅
- 批准号:
2037673 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Probing and Engineering Cell Membrane with Graphene
用石墨烯探测和改造细胞膜
- 批准号:
1810088 - 财政年份:2018
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
GOALI: Engineered photonic structures with extreme energy density for single particle studies
目标:用于单粒子研究的具有极高能量密度的工程光子结构
- 批准号:
1809937 - 财政年份:2018
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
GOALI: Slotted nanobeams for creating and controlling gradient optical forces
GOALI:用于创建和控制梯度光学力的开槽纳米束
- 批准号:
1407777 - 财政年份:2014
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Multifunctional Hybrid Porous Nanoparticles for Controlled Drug Release
用于控制药物释放的多功能杂化多孔纳米颗粒
- 批准号:
1207019 - 财政年份:2012
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
GOALI: Role of surface area and quality factor on small molecule detection sensitivity
目标:表面积和品质因数对小分子检测灵敏度的作用
- 批准号:
0925642 - 财政年份:2009
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
CAREER: Porous Silicon Waveguides for Portable Nanoscale Biosensing Applications
职业:用于便携式纳米级生物传感应用的多孔硅波导
- 批准号:
0746296 - 财政年份:2008
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
SGER: Evaluation of Porous Silicon Pore Size for Effective Infiltration of Biomolecules
SGER:评估多孔硅孔径对生物分子有效渗透的影响
- 批准号:
0722143 - 财政年份:2007
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
相似国自然基金
在油菜中发展基因组选择技术助力新型种质资源库优良株系的鉴定和杂交种测配
- 批准号:32171982
- 批准年份:2021
- 资助金额:59.00 万元
- 项目类别:面上项目
亲本自交系对玉米杂交种抗旱能力的影响及机理解析
- 批准号:32172113
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
在油菜中发展基因组选择技术助力新型种质资源库优良株系的鉴定和杂交种测配
- 批准号:
- 批准年份:2021
- 资助金额:59 万元
- 项目类别:面上项目
亲本自交系对玉米杂交种抗旱能力的影响及机理解析
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
基于全长转录组研究“西盘鲍”杂交种阶段性抗病菌杂种优势的机制
- 批准号:31902369
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
I-Corps: Tri-Cure Hybrid Organo-Silicon Coatings for Surface Preservation
I-Corps:用于表面保护的 Tri-Cure 混合有机硅涂料
- 批准号:
2327701 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
New Hybrid Silicon Reduction Process Using Hydrogen Radicals for Decarbonization
使用氢自由基脱碳的新型混合硅还原工艺
- 批准号:
23H01736 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
GOALI: Hybrid Silicon-Transparent Conductive Oxide Devices for Large-Scale On-chip Wavelength Division Multiplexing Optical Interconnects
GOALI:用于大规模片上波分复用光学互连的混合硅-透明导电氧化物器件
- 批准号:
2240352 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Multimodal hybrid nanoparticles for the treatment of triple-negative breast cancer
多模式混合纳米粒子用于治疗三阴性乳腺癌
- 批准号:
10514997 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Hybrid Graphene/Superconducting Optoelectronics on Silicon Photonic Crystals
硅光子晶体上的混合石墨烯/超导光电子学
- 批准号:
RGPIN-2017-04187 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
Discovery Grants Program - Individual