Spaces of geometric structures via geometric transitions
通过几何过渡的几何结构空间
基本信息
- 批准号:1510254
- 负责人:
- 金额:$ 16.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A geometric manifold is an abstract mathematical object designed to model the space we live in. The concept also encompasses the notion of a space-time in the theory of relativity, as well as phase spaces, configuration spaces, and other useful structures in physics. While empirical physics is dedicated to measuring the precise features (e.g. shape, size, etc.) of our universe, the question of what possible features could the universe have, subject to certain laws, is a mathematical one. The data comprising the answer to such a question is called a moduli space; it is a topological space whose points are all possible geometric manifolds of a certain type and whose topology organizes those geometric manifolds into families whose features vary continuously. This project addresses important questions about many different classes of low-dimensional geometric manifolds and their moduli. The PI will study these questions by further developing and applying an emerging new mathematical framework which describes interaction between moduli spaces of different types of geometric manifolds through a mechanism called geometric transition. The research to be conducted in this project weaves together ideas from a wide cross-section of mathematics and physics, including geometry, topology, group theory, dynamics, and relativity. Progress on these problems will be of significance to many researchers across these disciplines and, more broadly, will contribute to the growing base of foundational knowledge on which many innovations in science and engineering are built.Recent progress by the PI and collaborators, in the setting of complete affine Lorentzian three-manifolds called Margulis spacetimes, suggests a rubric to approach difficult questions in higher dimensional affine geometry. By further developing and generalizing the geometric transition technology used to study Margulis spacetimes as limits of curved spacetimes, the PI will address important questions in higher dimensional affine geometry surrounding the Auslander Conjecture. A second main theme is the study of the relationship between hyperbolic and anti de Sitter (AdS) geometry in dimension three. Work of the PI on the hyperbolic-AdS transition establishes an explicit and natural connection between the two geometries with the potential to expedite progress in the study of geometric structures in both settings. In particular, recent joint work gives new evidence for the bending measure conjecture for convex AdS spacetimes, a counterpart to Thurston's conjecture characterizing convex hyperbolic three-manifolds in terms of bending data on the convex core. The PI will work toward the resolution of these conjectures by further examining the interaction between convex structures in both settings. Additionally, the PI will begin a new project to develop applications of geometric transitions in the setting of representation theory of hyperbolic groups into higher rank Lie groups, a growing subject known as higher Teichmüller theory.
几何流形是一种抽象的数学对象,旨在模拟我们生活的空间。这个概念也包括相对论中的时空概念,以及相空间,配置空间和其他物理学中有用的结构。而经验物理学致力于测量精确的特征(例如形状,大小等)。在我们的宇宙中,宇宙在服从某些定律的情况下可能具有什么样的特征,这是一个数学问题。包含此类问题答案的数据称为模空间;它是一个拓扑空间,其点都是某种类型的可能几何流形,并且其拓扑将这些几何流形组织成特征连续变化的族。这个项目解决了许多不同类别的低维几何流形及其模的重要问题。PI将通过进一步开发和应用一种新兴的新数学框架来研究这些问题,该框架通过一种称为几何过渡的机制来描述不同类型几何流形的模空间之间的相互作用。在这个项目中进行的研究编织在一起的想法从广泛的横截面的数学和物理学,包括几何,拓扑学,群论,动力学和相对论。这些问题的进展将对这些学科的许多研究人员具有重要意义,更广泛地说,将有助于科学和工程领域许多创新所建立的基础知识的不断增长。PI和合作者最近的进展,在称为Margulis时空的完整仿射洛伦兹三维流形的设置中,提出了一个解决高维仿射几何难题的方法。通过进一步发展和推广用于研究Margulis时空作为弯曲时空极限的几何过渡技术,PI将解决围绕Auslander猜想的高维仿射几何中的重要问题。第二个主题是研究双曲和反德西特(AdS)几何在三维空间中的关系。PI在双曲线AdS过渡上的工作建立了两种几何形状之间明确而自然的联系,有可能加快两种设置中几何结构研究的进展。特别是,最近的联合工作提供了新的证据弯曲措施猜想凸AdS时空,对应瑟斯顿的猜想特征凸双曲三流形弯曲数据的凸核心。PI将通过进一步检查两种设置中凸结构之间的相互作用来解决这些问题。此外,PI将开始一个新的项目,以开发几何转换的应用程序,在设置的表示理论的双曲群到更高的秩李群,一个日益增长的主题被称为高等泰希米勒理论。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Polyhedra inscribed in a quadric
内接于二次曲面的多面体
- DOI:10.1007/s00222-020-00948-9
- 发表时间:2020
- 期刊:
- 影响因子:3.1
- 作者:Danciger, Jeffrey;Maloni, Sara;Schlenker, Jean-Marc
- 通讯作者:Schlenker, Jean-Marc
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Danciger其他文献
A Hilbert Space Approach to Bounded Analytic Interpolation
- DOI:
10.1007/s11785-007-0029-7 - 发表时间:
2007-09-25 - 期刊:
- 影响因子:0.800
- 作者:
Jeffrey Danciger;Simon Rubinstein-Salzedo - 通讯作者:
Simon Rubinstein-Salzedo
Jeffrey Danciger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey Danciger', 18)}}的其他基金
CAREER: Locally Homogeneous Geometric Manifolds and Their Moduli Spaces
职业:局部齐次几何流形及其模空间
- 批准号:
1945493 - 财政年份:2020
- 资助金额:
$ 16.91万 - 项目类别:
Continuing Grant
Deformation Spaces of Geometric Structures
几何结构的变形空间
- 批准号:
1812216 - 财政年份:2018
- 资助金额:
$ 16.91万 - 项目类别:
Standard Grant
相似国自然基金
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
对RS和AG码新型软判决代数译码的研究
- 批准号:61671486
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
Ginzburg-Landau 型发展方程的拓扑缺陷以及相关问题研究
- 批准号:11071206
- 批准年份:2010
- 资助金额:30.0 万元
- 项目类别:面上项目
Bose-Einstein凝聚、超导G-L模型以及相关问题研究
- 批准号:10771181
- 批准年份:2007
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
Deformation spaces of geometric structures
几何结构的变形空间
- 批准号:
2304636 - 财政年份:2023
- 资助金额:
$ 16.91万 - 项目类别:
Standard Grant
Complex geometric structures and their moduli on Lie groups and homogeneous spaces
李群和齐次空间上的复杂几何结构及其模
- 批准号:
21K03248 - 财政年份:2021
- 资助金额:
$ 16.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Deformation Spaces of Geometric Structures
几何结构的变形空间
- 批准号:
1906441 - 财政年份:2019
- 资助金额:
$ 16.91万 - 项目类别:
Standard Grant
Exceptional geometric structures required for string theory and M-theory: moduli spaces and formation of singularities
弦理论和 M 理论所需的特殊几何结构:模空间和奇点的形成
- 批准号:
RGPIN-2014-05050 - 财政年份:2018
- 资助金额:
$ 16.91万 - 项目类别:
Discovery Grants Program - Individual
Asymptotic properties of Higgs bundle moduli spaces and related geometric structures.
希格斯丛模空间和相关几何结构的渐近性质。
- 批准号:
405873528 - 财政年份:2018
- 资助金额:
$ 16.91万 - 项目类别:
Heisenberg Fellowships
Deformation Spaces of Geometric Structures
几何结构的变形空间
- 批准号:
1812216 - 财政年份:2018
- 资助金额:
$ 16.91万 - 项目类别:
Standard Grant
Exceptional geometric structures required for string theory and M-theory: moduli spaces and formation of singularities
弦理论和 M 理论所需的特殊几何结构:模空间和奇点的形成
- 批准号:
RGPIN-2014-05050 - 财政年份:2017
- 资助金额:
$ 16.91万 - 项目类别:
Discovery Grants Program - Individual
Exceptional geometric structures required for string theory and M-theory: moduli spaces and formation of singularities
弦理论和 M 理论所需的特殊几何结构:模空间和奇点的形成
- 批准号:
RGPIN-2014-05050 - 财政年份:2016
- 资助金额:
$ 16.91万 - 项目类别:
Discovery Grants Program - Individual
Geometry and dynamics on deformation spaces of geometric structures
几何结构变形空间的几何与动力学
- 批准号:
1650811 - 财政年份:2016
- 资助金额:
$ 16.91万 - 项目类别:
Standard Grant
Espaces de structures géométriques et théorie de Teichmüller supérieure / Spaces of geometric structures and higher Teichmüller theory
Espaces de Structures géométriques et théorie de Teichmüller superrieure / 几何结构空间和更高的 Teichmüller 理论
- 批准号:
261173-2012 - 财政年份:2016
- 资助金额:
$ 16.91万 - 项目类别:
Discovery Grants Program - Individual