Change-Point Analysis for Multivariate and Object Data
多变量和对象数据的变点分析
基本信息
- 批准号:1513653
- 负责人:
- 金额:$ 34.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Technological advances allow for the collection of massive data in the study of complex phenomena over time and/or space in various fields. Many of these data involve sequences of high dimensional or non-Euclidean measurements, where change-point analysis is a crucial early step in understanding the data: Segmentation or offline change-point analysis divides data into homogeneous temporal or spatial segments, making subsequent analysis easier; its online counterpart detects changes in sequentially observed data, allowing for real-time anomaly detection. Traditional change-point analyses primarily focus on univariate measurements. There is some literature on multivariate data, but very little on object data. This project considers both offline and online change-point analysis for multivariate and object data, for instance, for temporal analysis of multiple sensor systems, images, and social networks. The proposed methods and corresponding theory build on previous work of the PI, which adapts nonparametric graph-based two-sample tests to the segmentation problem. The PI has shown that the graph-based approach scales flexibly to high dimensional and object data, and allows for a universal analytic permutation p-value approximation that is decoupled from application-specific modeling. Despite this recent development, many challenges remain. This project identifies these challenges, formulates them into approachable frameworks, and develops appropriate methods and theoretical treatments. In particular, this project will (1) study more sensitive distance-based tests for testing equality of distributions in high dimensional or in non-Euclidean spaces, which will be adapted to the change-point testing and estimation problem, resulting in a more sensitive and accurate detection of general changes; (2) address methodological and theoretical issues in extending the nonparametric graph-based framework on the offline case to the online scenario; and (3) extend graph-based segmentation and online detection to a circular block permutation framework, enabling them to work for multivariate and object data with weak local dependence.
技术进步使人们能够收集大量数据,研究各种领域的时间和/或空间的复杂现象。其中许多数据涉及高维或非欧几里德测量序列,其中变点分析是理解数据的关键早期步骤:分段或离线变点分析将数据划分为同质的时间或空间段,使后续分析更容易;其在线对应项检测顺序观测数据的变化,从而实现实时异常检测。传统的变点分析主要关注单变量测量。有一些关于多变量数据的文献,但关于对象数据的文献很少。该项目考虑了多变量和对象数据的离线和在线变化点分析,例如,用于多传感器系统、图像和社会网络的时间分析。所提出的方法和相应的理论建立在PI的前人工作的基础上,该方法将基于非参数图的两样本测试应用于分割问题。PI已经表明,基于图形的方法可以灵活地扩展到高维和对象数据,并允许通用的解析置换p值近似,该近似与特定于应用程序的建模分离。尽管最近取得了这些进展,但仍然存在许多挑战。该项目确定了这些挑战,将它们制定为可接近的框架,并开发了适当的方法和理论处理方法。特别是,这个项目将(1)研究更敏感的基于距离的测试,以测试高维或非欧几里德空间中分布的相等性,这将适用于变点测试和估计问题,从而更敏感和更准确地检测一般变化;(2)解决将离线情况下的非参数图框架扩展到在线场景的方法和理论问题;以及(3)将基于图的分割和在线检测扩展到圆形块排列框架,使其能够处理具有弱局部相关性的多变量和对象数据。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Normality Test for High-dimensional Data Based on the Nearest Neighbor Approach
- DOI:10.1080/01621459.2021.1953507
- 发表时间:2019-04
- 期刊:
- 影响因子:3.7
- 作者:Hao Chen;Yin Xia
- 通讯作者:Hao Chen;Yin Xia
Sequential Change-Point Detection for High-Dimensional and Non-Euclidean Data
高维和非欧几里德数据的顺序变化点检测
- DOI:10.1109/tsp.2022.3205763
- 发表时间:2022
- 期刊:
- 影响因子:5.4
- 作者:Chu, Lynna;Chen, Hao
- 通讯作者:Chen, Hao
A Weighted Edge-Count Two-Sample Test for Multivariate and Object Data
- DOI:10.1080/01621459.2017.1307757
- 发表时间:2018-01-01
- 期刊:
- 影响因子:3.7
- 作者:Chen, Hao;Chen, Xu;Su, Yi
- 通讯作者:Su, Yi
A Fast and Efficient Change-Point Detection Framework Based on Approximate $k$-Nearest Neighbor Graphs
一种基于近似$k$-最近邻图的快速高效的变化点检测框架
- DOI:10.1109/tsp.2022.3162120
- 发表时间:2022
- 期刊:
- 影响因子:5.4
- 作者:Liu, Yi-Wei;Chen, Hao
- 通讯作者:Chen, Hao
New multivariate tests for assessing covariate balance in matched observational studies
用于评估匹配观察研究中协变量平衡的新多变量测试
- DOI:10.1111/biom.13395
- 发表时间:2020
- 期刊:
- 影响因子:1.9
- 作者:Chen, Hao;Small, Dylan S.
- 通讯作者:Small, Dylan S.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hao Chen其他文献
A multi-objective optimization approach for the selection of overseas oil projects
海外石油项目选择的多目标优化方法
- DOI:
10.1016/j.cie.2020.106977 - 发表时间:
2020-11 - 期刊:
- 影响因子:7.9
- 作者:
Hao Chen;Li Xi-Yu;Lu Xin-Ru;Sheng Ni;Zhou Wei;Geng Hao-Peng;Yu Shiwei - 通讯作者:
Yu Shiwei
Aerosol optical depth and fine-mode fraction retrieval over East Asia using multi-angular total and polarized remote sensing
利用多角度全偏振遥感反演东亚气溶胶光学深度和精细模式分数
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:3.8
- 作者:
Tianhai Cheng;Xingfa Gu;Donghai Xie;Zhengqiang Li;Tao Yu;Hao Chen - 通讯作者:
Hao Chen
Quantification of control rod worth uncertainties propagated from nuclear data via a hybrid high-order perturbation and efficient sampling method
通过混合高阶扰动和高效采样方法对从核数据传播的控制棒价值不确定性进行量化
- DOI:
10.1016/j.anucene.2017.12.049 - 发表时间:
2018-04 - 期刊:
- 影响因子:1.9
- 作者:
Hao Chen;Li Fu;Hu Wenqi;Zhang Yunfei;Zhao Qiang - 通讯作者:
Zhao Qiang
Freeform manufacturing of a progressive addition lens by use of a voice coil fast tool servo
使用音圈快速工具伺服系统自由曲面制造渐进多焦点镜片
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Yi Yu Li;Jiaojie Chen;H. Feng;Chaohong Li;Jia Qu;Hao Chen - 通讯作者:
Hao Chen
Image Classification Model Based on Deep Learning in Internet of Things
物联网中基于深度学习的图像分类模型
- DOI:
10.1155/2020/6677907 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Songshang Zou;Wenshu Chen;Hao Chen - 通讯作者:
Hao Chen
Hao Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hao Chen', 18)}}的其他基金
ERI: Representations of Complex Engineering Systems via Technology Recursion and Renormalization Group
ERI:通过技术递归和重整化群表示复杂工程系统
- 批准号:
2301627 - 财政年份:2023
- 资助金额:
$ 34.18万 - 项目类别:
Standard Grant
Making Use of the Curse of Dimensionality in Modern Data Analysis
在现代数据分析中利用维度诅咒
- 批准号:
2311399 - 财政年份:2023
- 资助金额:
$ 34.18万 - 项目类别:
Standard Grant
Development of Absolute Quantitative Protein Footprinting Mass Spectrometry (aqPFMS) for Probing Protein 3D Structures
开发用于探测蛋白质 3D 结构的绝对定量蛋白质足迹质谱 (aqPFMS)
- 批准号:
2203284 - 财政年份:2022
- 资助金额:
$ 34.18万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Collaborative: Understanding and Detecting Memory Bugs in Rust
SaTC:核心:小:协作:理解和检测 Rust 中的内存错误
- 批准号:
1956364 - 财政年份:2020
- 资助金额:
$ 34.18万 - 项目类别:
Standard Grant
CAREER: New Change-Point Problems in Analyzing High-Dimensional and Non-Euclidean Data
职业:分析高维和非欧几里得数据的新变点问题
- 批准号:
1848579 - 财政年份:2019
- 资助金额:
$ 34.18万 - 项目类别:
Continuing Grant
SaTC: CORE: Medium: Collaborative: Towards Robust Machine Learning Systems
SaTC:核心:媒介:协作:迈向稳健的机器学习系统
- 批准号:
1801751 - 财政年份:2018
- 资助金额:
$ 34.18万 - 项目类别:
Standard Grant
Development of Electrochemical Mass Spectrometry for the Study of Protein Redox Chemistry and Protein Structures
用于研究蛋白质氧化还原化学和蛋白质结构的电化学质谱法的发展
- 批准号:
1915878 - 财政年份:2018
- 资助金额:
$ 34.18万 - 项目类别:
Continuing Grant
Development of Electrochemical Mass Spectrometry for the Study of Protein Redox Chemistry and Protein Structures
用于研究蛋白质氧化还原化学和蛋白质结构的电化学质谱法的发展
- 批准号:
1709075 - 财政年份:2017
- 资助金额:
$ 34.18万 - 项目类别:
Continuing Grant
CAREER: Development of Microsecond Time-Resolved Mass Spectrometry for the Study of Biochemical Reaction Mechanisms and Kinetics
职业:开发微秒时间分辨质谱用于生化反应机制和动力学研究
- 批准号:
1149367 - 财政年份:2012
- 资助金额:
$ 34.18万 - 项目类别:
Continuing Grant
TC: Small: Designing New Authentication Mechanisms using Hardware Capabilities in Advanced Mobile Devices
TC:小型:使用高级移动设备中的硬件功能设计新的身份验证机制
- 批准号:
1018964 - 财政年份:2010
- 资助金额:
$ 34.18万 - 项目类别:
Standard Grant
相似国自然基金
解大型非对称鞍点(Saddle Point) 问题的有效算法的研究
- 批准号:60573157
- 批准年份:2005
- 资助金额:20.0 万元
- 项目类别:面上项目
相似海外基金
Nonparametric change-point analysis, invariance principles for multivariate Student processes, and asymptotic theory in linear errors-in-variables models
非参数变点分析、多元学生过程的不变原理以及线性变量误差模型中的渐近理论
- 批准号:
RGPIN-2018-05052 - 财政年份:2022
- 资助金额:
$ 34.18万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric change-point analysis, invariance principles for multivariate Student processes, and asymptotic theory in linear errors-in-variables models
非参数变点分析、多元学生过程的不变原理以及线性变量误差模型中的渐近理论
- 批准号:
RGPIN-2018-05052 - 财政年份:2021
- 资助金额:
$ 34.18万 - 项目类别:
Discovery Grants Program - Individual
Change-point analysis in high dimensions
高维变点分析
- 批准号:
EP/T02772X/2 - 财政年份:2021
- 资助金额:
$ 34.18万 - 项目类别:
Research Grant
Change-point analysis in high dimensions
高维变点分析
- 批准号:
EP/T02772X/1 - 财政年份:2021
- 资助金额:
$ 34.18万 - 项目类别:
Research Grant
Nonparametric change-point analysis, invariance principles for multivariate Student processes, and asymptotic theory in linear errors-in-variables models
非参数变点分析、多元学生过程的不变原理以及线性变量误差模型中的渐近理论
- 批准号:
RGPIN-2018-05052 - 财政年份:2020
- 资助金额:
$ 34.18万 - 项目类别:
Discovery Grants Program - Individual
Active Sequential Change-Point Analysis of Multi-Stream Data
多流数据的主动顺序变点分析
- 批准号:
2015405 - 财政年份:2020
- 资助金额:
$ 34.18万 - 项目类别:
Standard Grant
New Directions in Bayesian Change-Point Analysis
贝叶斯变点分析的新方向
- 批准号:
2015460 - 财政年份:2020
- 资助金额:
$ 34.18万 - 项目类别:
Standard Grant
Nonparametric change-point analysis, invariance principles for multivariate Student processes, and asymptotic theory in linear errors-in-variables models
非参数变点分析、多元学生过程的不变原理以及线性变量误差模型中的渐近理论
- 批准号:
RGPIN-2018-05052 - 财政年份:2019
- 资助金额:
$ 34.18万 - 项目类别:
Discovery Grants Program - Individual
Offline and Online Change-point Analysis for Large-scale Time Series Data
大规模时间序列数据的离线和在线变点分析
- 批准号:
1916239 - 财政年份:2019
- 资助金额:
$ 34.18万 - 项目类别:
Continuing Grant
Collaborative Research: A Symphony of Smoothing and Change Point Analysis
协作研究:平滑和变点分析的交响乐
- 批准号:
1916174 - 财政年份:2019
- 资助金额:
$ 34.18万 - 项目类别:
Standard Grant