CAREER: New Change-Point Problems in Analyzing High-Dimensional and Non-Euclidean Data

职业:分析高维和非欧几里得数据的新变点问题

基本信息

  • 批准号:
    1848579
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

In this big data era, massive data sequences are collected in various scientific fields for studying complicated phenomena over time and space, including neuroscience, epidemiology, social science, computer vision, and astronomy. Change-point analysis is a crucial early step in analyzing these data sequences, such as, to raise an alarm when an abnormal event happens in online data monitoring, and to segment a long sequence into more homogeneous parts for follow-up studies. To accommodate modern applications, the ability to deal with high throughput data and data with complicated structures is becoming a necessity. Parametric methods usually cannot be applied to very high dimensions unless strong assumptions are made to avoid the estimation of a large number of nuisance parameters. This project focuses on developing non-parametric change-point detection methods that are free of strong assumptions and computationally scalable to high dimensional and complex data. This project provides students and researchers with exciting new research problems that have both statistical and scientific importance. The training component for undergraduate and graduate students will prepare new researchers with inter-disciplinary education.This project will develop a new scan statistic framework through a novel adaptation of graph-based methods. The PI has shown that the graph-based approaches scale to high-dimensional and non-Euclidean data, and allow for universal analytic permutation p-value approximations that is decoupled from application-specific modeling, facilitating their applications to large and complicated data sets. Despite the good properties of the graph-based methods, there are still some gaps between its current versions and many modern applications. This project aims to fill those important gaps. In particular, this project will (1) develop new graph-based approaches to effectively integrate information from multiple sources, which is common in many application areas, such as smart homes and smart cities, and seek ways to distribute the new approaches to local centers to avoid the excessive transmission of raw data in a distributed system; (2) develop treatments from the level of constructing the graph to deal with dependent data, which is more effective than a circular block permutation framework developed by the PI earlier; and (3) develop a new framework to provide analytic power approximations to the graph-based methods that kick in for sample sizes in hundreds and thousands even for high-dimensional data and non-Euclidean data, facilitating researchers to make better decisions in real applications. These methodological and theoretical developments will provide better understandings of modern complicated data sequences from diverse fields, which will further advance the understanding of major scientific problems in these fields. The tools developed in this project will be distributed as open source software packages with detailed documentations. This will enhance the collaboration between the statistics community and researchers from broader scientific fields, and make data analysis procedures more transparent.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在这个大数据时代,在各个科学领域收集了大量数据序列,用于研究时间和空间上的复杂现象,包括神经科学,流行病学,社会科学,计算机视觉和天文学。 变点分析是分析这些数据序列的关键早期步骤,例如,当在线数据监测中发生异常事件时发出警报,以及将长序列分割成更同质的部分以供后续研究。 为了适应现代应用,处理高吞吐量数据和具有复杂结构的数据的能力正变得必要。 参数方法通常不能应用于非常高的维度,除非做出强有力的假设以避免估计大量的讨厌的参数。 该项目的重点是开发非参数变点检测方法,这些方法不需要强假设,并且可以在计算上扩展到高维和复杂的数据。 该项目为学生和研究人员提供了令人兴奋的新的研究问题,具有统计和科学的重要性。 对本科生和研究生的培训部分将为新的研究人员提供跨学科的教育。该项目将通过对基于图形的方法的新的适应来开发一个新的扫描统计框架。 PI已经表明,基于图的方法可以扩展到高维和非欧几里德数据,并允许通用的解析置换p值近似,与特定于应用程序的建模解耦,便于将其应用于大型和复杂的数据集。 尽管基于图的方法具有良好的性能,但其当前版本与许多现代应用之间仍存在一些差距。该项目旨在填补这些重要空白。 具体而言,该项目将(1)开发新的基于图形的方法,以有效地整合来自多个来源的信息,这在许多应用领域中是常见的,如智能家居和智能城市,并寻求将新方法分发到本地中心的方法,以避免在分布式系统中过度传输原始数据;(2)从构造图的层次开发处理依赖数据的方法,这比PI早期开发的循环块置换框架更有效;以及(3)开发一个新的框架,为基于图的方法提供分析能力近似,即使对于高维数据和非欧几里德数据,基于图的方法也可以用于数百和数千个样本大小,从而促进研究人员在真实的应用中做出更好的决策。 这些方法和理论的发展将提供更好的理解现代复杂的数据序列从不同的领域,这将进一步推进在这些领域的重大科学问题的理解。 在这个项目中开发的工具将作为开源软件包分发,并附有详细的文档。 这将加强统计界与来自更广泛科学领域的研究人员之间的合作,并使数据分析程序更加透明。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Normality Test for High-dimensional Data Based on the Nearest Neighbor Approach
A Fast and Efficient Change-Point Detection Framework Based on Approximate $k$-Nearest Neighbor Graphs
一种基于近似$k$-最近邻图的快速高效的变化点检测框架
Likelihood Scores for Sparse Signal and Change-Point Detection
稀疏信号和变化点检测的似然评分
  • DOI:
    10.1109/tit.2023.3242297
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Hu, Shouri;Huang, Jingyan;Chen, Hao;Chan, Hock Peng
  • 通讯作者:
    Chan, Hock Peng
Sequential Change-Point Detection for High-Dimensional and Non-Euclidean Data
高维和非欧几里德数据的顺序变化点检测
Graph-Based Change-Point Analysis
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hao Chen其他文献

Large Core Multimode Fiber with High Tolerance to Coupling Misalignment and Dust Contamination in Intra-Vehicle Networks
大芯径多模光纤对车内网络中的耦合失准和灰尘污染具有高耐受性
  • DOI:
    10.1016/j.optcom.2024.130575
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Yuzhong Ma;Xin Chen;J. E. Hurley;Hao Dong;Hao Chen;Ming;Gordon Ning Liu
  • 通讯作者:
    Gordon Ning Liu
How does ageism in uence frailty? A pilot study using a structural equation model
年龄歧视如何影响虚弱?
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Ye;Junling Gao;Hao Chen
  • 通讯作者:
    Hao Chen
CHAPTER NINE-Automatic lesion detection with three-dimensional convolutional neural networks
第九章-利用三维卷积神经网络进行自动病变检测
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Q. Dou;Hao Chen;Jing Qin;Pheng
  • 通讯作者:
    Pheng
Stability Analysis of Discrete-Time Linear Time-Varying Switched Systems with Delays
带时滞离散时间线性时变切换系统的稳定性分析
  • DOI:
    10.1016/j.ifacol.2017.08.842
  • 发表时间:
    2017-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xingwen Liu;Hao Chen
  • 通讯作者:
    Hao Chen
Palladium hydride nanourchins with amplified photothermal therapeutic effects through controlled hydrogen release and antigen-assisted immune activation
氢化钯纳米胆通过受控氢释放和抗原辅助免疫激活增强光热治疗效果
  • DOI:
    10.1016/j.cej.2022.136296
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    15.1
  • 作者:
    Hao Chen;Binbin Ding;Jia Tan;Pan Zheng;Ziyong Cheng;Ping'an Ma;Jun Lin
  • 通讯作者:
    Jun Lin

Hao Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hao Chen', 18)}}的其他基金

ERI: Representations of Complex Engineering Systems via Technology Recursion and Renormalization Group
ERI:通过技术递归和重整化群表示复杂工程系统
  • 批准号:
    2301627
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Making Use of the Curse of Dimensionality in Modern Data Analysis
在现代数据分析中利用维度诅咒
  • 批准号:
    2311399
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Development of Absolute Quantitative Protein Footprinting Mass Spectrometry (aqPFMS) for Probing Protein 3D Structures
开发用于探测蛋白质 3D 结构的绝对定量蛋白质足迹质谱 (aqPFMS)
  • 批准号:
    2203284
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Collaborative: Understanding and Detecting Memory Bugs in Rust
SaTC:核心:小:协作:理解和检测 Rust 中的内存错误
  • 批准号:
    1956364
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
SaTC: CORE: Medium: Collaborative: Towards Robust Machine Learning Systems
SaTC:核心:媒介:协作:迈向稳健的机器学习系统
  • 批准号:
    1801751
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Development of Electrochemical Mass Spectrometry for the Study of Protein Redox Chemistry and Protein Structures
用于研究蛋白质氧化还原化学和蛋白质结构的电化学质谱法的发展
  • 批准号:
    1915878
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Development of Electrochemical Mass Spectrometry for the Study of Protein Redox Chemistry and Protein Structures
用于研究蛋白质氧化还原化学和蛋白质结构的电化学质谱法的发展
  • 批准号:
    1709075
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Change-Point Analysis for Multivariate and Object Data
多变量和对象数据的变点分析
  • 批准号:
    1513653
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Development of Microsecond Time-Resolved Mass Spectrometry for the Study of Biochemical Reaction Mechanisms and Kinetics
职业:开发微秒时间分辨质谱用于生化反应机制和动力学研究
  • 批准号:
    1149367
  • 财政年份:
    2012
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
TC: Small: Designing New Authentication Mechanisms using Hardware Capabilities in Advanced Mobile Devices
TC:小型:使用高级移动设备中的硬件功能设计新的身份验证机制
  • 批准号:
    1018964
  • 财政年份:
    2010
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似海外基金

Development of new soybean ecotype adapting climate change.
适应气候变化的大豆新生态型开发。
  • 批准号:
    23K05168
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Undergraduate Biology Education and Research - A New Vision for Change: Re-imagining Biology Education through Social Justice
本科生物教育与研究 - 变革的新愿景:通过社会正义重新构想生物教育
  • 批准号:
    2311961
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
A New Approach to Disaster Resilience and Climate Change Education
抗灾和气候变化教育的新方法
  • 批准号:
    23K12767
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
A New Strategy for Switchable Magnetic Interactions Trigered by Structure Change due to External Stimuli
外部刺激引起的结构变化触发可切换磁相互作用的新策略
  • 批准号:
    23KJ0970
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Health system resilience to climate change: How to Strenghten Public Health Preparedness and Emergency Response to Extreme Weather Events in New Brusnwick ?
卫生系统对气候变化的抵御能力:如何加强新布鲁斯威克极端天气事件的公共卫生准备和应急响应?
  • 批准号:
    485343
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Operating Grants
Constructing pedagogical theories and approaches for the new relationships between children and nature: Early childhood education in an Era of Climate Change
构建儿童与自然新关系的教学理论和方法:气候变化时代的幼儿教育
  • 批准号:
    23KK0042
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
A Climate of Hope: Investigating learning at an innovative exhibit towards new knowledge, theory, and practice of climate change learning with diverse audiences
希望的气候:在创新展览中调查学习情况,向不同观众学习气候变化的新知识、理论和实践
  • 批准号:
    2314238
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Process change of drug addicts to seek medical care and development of a new group intervention method
吸毒人员就医流程的转变及新型群体干预方法的发展
  • 批准号:
    23K12916
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
MCA: Ontogenetic constraints to climate change resilience – Investigating consequences of heteroblasty under increasing aridity in New Zealand forests
MCA:气候变化恢复力的个体发育限制 — 调查新西兰森林日益干旱的情况下异质发育的后果
  • 批准号:
    2218916
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Reimaging Diabetes Self-Management Education for Seniors in rural Ontario through a Participatory Knowledge Exchange Process: Leveraging Lived Experiences for Current Priorities, Strategies for Change, and New Directions
通过参与式知识交流过程,重新构想安大略省农村老年人的糖尿病自我管理教育:利用当前优先事项的生活经验、变革策略和新方向
  • 批准号:
    468015
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Miscellaneous Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了