Active Sequential Change-Point Analysis of Multi-Stream Data

多流数据的主动顺序变点分析

基本信息

  • 批准号:
    2015405
  • 负责人:
  • 金额:
    $ 21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-15 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

This project aims to develop efficient methodologies and algorithms for actively learning from high-dimensional streaming data under the sampling or resource constraints. In many real-world applications, a system consists of many processes that can generate many data streams. At some unknown time, an unusual event could occur to the system, for example, a disease outbreak, a manufacturing defect, or a fraud signal, yielding a set of anomalous processes. Most systems however are operated under resource constraints that prevent the simultaneous use of all resources all the time. Thus, the decision maker must be responsible for actively choosing which processes are prioritized for observation. This will enhance their existing knowledge about the occurring event or anomalous processes while exploring new information and accounting for the penalty of the wrong declaration. The research would have broader impacts in a wide range of real-world applications such as biosurveillance, epidemiology, engineering, homeland security, and finance. The project will integrate research and education by infusing research findings into the curriculum and by training graduate students.This project seeks to make comprehensive progress on methodology, theory, and application of active sequential change-point analysis of multi-stream data under the sampling or resource constraints. The specific research aims are: (1) design efficient active change-point detection algorithms with false alarm guarantees, (2) develop an asymptotic theory to characterize statistical performances of the developed methods, (3) post-hoc analysis to apply false discovery rate methods to identify anomalous processes; and (4) applications in sepsis screening with online monitoring data from medical sensors in intensive care units to identify sepsis patients as quickly as possible while avoiding alarm fatigue. Results of the project are expected to significantly advance the state of the art in sequential analysis, change-point detection, multi-armed bandit problems, streaming data analysis, and large-scale inference.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本项目旨在开发有效的方法和算法,用于在采样或资源约束下从高维流数据中主动学习。在许多现实世界的应用程序中,系统由可以生成许多数据流的许多进程组成。在某个未知的时间,系统可能发生不寻常的事件,例如,疾病爆发、制造缺陷或欺诈信号,从而产生一组异常过程。然而,大多数系统是在资源限制下运行的,这阻止了所有资源的同时使用。因此,决策者必须负责主动选择哪些过程是优先观察的。这将增强他们对正在发生的事件或异常过程的现有知识,同时探索新的信息并考虑错误申报的处罚。这项研究将在生物监测、流行病学、工程、国土安全和金融等广泛的现实应用中产生更广泛的影响。该项目将通过将研究成果融入课程和培养研究生来整合研究和教育。本项目寻求在采样或资源限制下多流数据的主动顺序变化点分析的方法、理论和应用方面取得全面进展。具体的研究目标是:(1)设计具有虚警保证的高效主动变点检测算法;(2)发展渐近理论来表征所开发方法的统计性能;(3)事后分析,应用错误发现率方法来识别异常过程;(4)重症监护病房医疗传感器在线监测数据在脓毒症筛查中的应用,以尽快识别脓毒症患者,同时避免报警疲劳。该项目的结果预计将显著推进序列分析、变化点检测、多臂强盗问题、流数据分析和大规模推理方面的最新技术。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Implicit Regularization Properties of Variance Reduced Stochastic Mirror Descent
Asymptotic Theory of \(\boldsymbol \ell _1\) -Regularized PDE Identification from a Single Noisy Trajectory
(oldsymbol ell _1) 的渐近理论 - 来自单个噪声轨迹的正则化偏微分方程辨识
Active learning-based multistage sequential decision-making model with application on common bile duct stone evaluation
  • DOI:
    10.1080/02664763.2023.2164885
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Hongzhen Tian;R. Cohen;Chuck Zhang;Yajun Mei
  • 通讯作者:
    Hongzhen Tian;R. Cohen;Chuck Zhang;Yajun Mei
Optimum Multi-Stream Sequential Change-Point Detection With Sampling Control
带采样控制的最佳多流顺序变化点检测
  • DOI:
    10.1109/tit.2021.3074961
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Xu, Qunzhi;Mei, Yajun;Moustakides, George V.
  • 通讯作者:
    Moustakides, George V.
Active quickest detection when monitoring multi-streams with two affected streams
监控具有两个受影响流的多流时主动最快检测
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yajun Mei其他文献

A Personalized Threshold Method via Boosting for Sepsis Screening
通过增强脓毒症筛查的个性化阈值方法
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chen Feng;Paul M. Griffin;S. Kethireddy;Yajun Mei
  • 通讯作者:
    Yajun Mei
Jugular Venous Catheterization is Not Associated with Increased Complications in Patients with Aneurysmal Subarachnoid Hemorrhage
  • DOI:
    10.1007/s12028-024-02173-1
  • 发表时间:
    2024-11-26
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Feras Akbik;Yuyang Shi;Steven Philips;Cederic Pimentel-Farias;Jonathan A. Grossberg;Brian M. Howard;Frank Tong;C. Michael Cawley;Owen B. Samuels;Yajun Mei;Ofer Sadan
  • 通讯作者:
    Ofer Sadan
Intrathecal Nicardipine for Cerebral Vasospasm Post Subarachnoid Hemorrhage–a Retrospective Propensity-Based Analysis
鞘内注射尼卡地平治疗蛛网膜下腔出血后脑血管痉挛——基于倾向的回顾性分析
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    O. Sadan;Hannah Waddel;R. Moore;Chen Feng;Yajun Mei;David Pearce;J. Kraft;Cederic Pimentel;Subin Mathew;F. Akbik;P. Ameli;A. Taylor;L. Danyluk;S. Kathleen;Martin;Krista Garner;Jennifer Kolenda;Amit Pujari;William;Asbury;Blessing N. R. Jaja;R. Macdonald;C. Cawley;D. Barrow;O. Samuels
  • 通讯作者:
    O. Samuels
Intrathecal Nicardipine for Cerebral Vasospasm Post Subarachnoid Hemorrhage: a Retrospective Analysis and Propensity-Based Comparison
鞘内注射尼卡地平治疗蛛网膜下腔出血后脑血管痉挛:回顾性分析和基于倾向的比较
  • DOI:
    10.1101/2020.08.31.20185181
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    O. Sadan;Hannah Waddel;R. Moore;Chen Feng;Yajun Mei;David Pearce;J. Kraft;Cederic Pimentel;Subin Mathew;F. Akbik;P. Ameli;A. Taylor;L. Danyluk;K. Martin;Krista Garner;Jennifer Kolenda;Amit Pujari;W. Asbury;Blessing N. R. Jaja;R. Macdonald;C. Cawley;D. Barrow;O. Samuels
  • 通讯作者:
    O. Samuels
Effect of bivariate data's correlation on sequential tests of circular error probability
双变量数据相关性对循环误差概率序贯检验的影响

Yajun Mei的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yajun Mei', 18)}}的其他基金

ATD: Collaborative Research: Adaptive and Rapid Spatial-Temporal Threat Detection over Networks
ATD:协作研究:网络上的自适应快速时空威胁检测
  • 批准号:
    1830344
  • 财政年份:
    2018
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Scaling Summaries in Multiscale Domains with Applications
通过应用程序扩展多尺度域中的摘要
  • 批准号:
    1613258
  • 财政年份:
    2016
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Collaborative Research: Online Monitoring of High-Dimensional Streaming Data Using Adaptive Order Shrinkage
合作研究:利用自适应阶次收缩在线监测高维流数据
  • 批准号:
    1362876
  • 财政年份:
    2014
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Achieving Spatial Adaptation via Inconstant Penalization: Theory and Computational Strategies
通过不恒定惩罚实现空间适应:理论和计算策略
  • 批准号:
    1106940
  • 财政年份:
    2011
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
CAREER: Streaming Data Analysis in Sensor Networks
职业:传感器网络中的流数据分析
  • 批准号:
    0954704
  • 财政年份:
    2010
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Fundamental Bounds on Decentralized Adaptive Detection in Hidden Markov Models
隐马尔可夫模型中分散自适应检测的基本界限
  • 批准号:
    0830472
  • 财政年份:
    2008
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant

相似海外基金

Qualitative description of the sequential change of the environment based on optical flow
基于光流的环境序列变化的定性描述
  • 批准号:
    21K04434
  • 财政年份:
    2021
  • 资助金额:
    $ 21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Project 3: Simultaneous Combined Or Sequential (S.O.S.) Approaches to Behavior Change for Survivors
项目 3:同时组合或顺序 (S.O.S.) 方法改变幸存者的行为
  • 批准号:
    10247782
  • 财政年份:
    2018
  • 资助金额:
    $ 21万
  • 项目类别:
Sequential Methods and Change Detection
顺序方法和变化检测
  • 批准号:
    36484-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 21万
  • 项目类别:
    Discovery Grants Program - Individual
"Group sequential procedures based on Ranked Set Sampling, sequential change-point and shrinkage estimation in correlated data"
“基于相关数据中的排序集采样、顺序变化点和收缩估计的分组顺序过程”
  • 批准号:
    293251-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 21万
  • 项目类别:
    Discovery Grants Program - Individual
Sequential Methods and Change Detection
顺序方法和变化检测
  • 批准号:
    36484-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 21万
  • 项目类别:
    Discovery Grants Program - Individual
"Group sequential procedures based on Ranked Set Sampling, sequential change-point and shrinkage estimation in correlated data"
“基于相关数据中的排序集采样、顺序变化点和收缩估计的分组顺序过程”
  • 批准号:
    293251-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 21万
  • 项目类别:
    Discovery Grants Program - Individual
"Group sequential procedures based on Ranked Set Sampling, sequential change-point and shrinkage estimation in correlated data"
“基于相关数据中的排序集采样、顺序变化点和收缩估计的分组顺序过程”
  • 批准号:
    293251-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 21万
  • 项目类别:
    Discovery Grants Program - Individual
Sequential Methods and Change Detection
顺序方法和变化检测
  • 批准号:
    36484-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 21万
  • 项目类别:
    Discovery Grants Program - Individual
The sequential change of a tumor position in postoperative irradiation of glioblastomas and induction of adaptive radiation therapy for glioblastoma
胶质母细胞瘤术后照射中肿瘤位置的顺序变化及胶质母细胞瘤适应性放射治疗的诱导
  • 批准号:
    26861005
  • 财政年份:
    2014
  • 资助金额:
    $ 21万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
RUI: A Bayesian Approach to Sequential Change Point Detection
RUI:顺序变化点检测的贝叶斯方法
  • 批准号:
    1407670
  • 财政年份:
    2014
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了