Smoky Great Plains Geometry Conference
烟熏大平原几何会议
基本信息
- 批准号:1518937
- 负责人:
- 金额:$ 3.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-03-15 至 2016-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The "Smoky Great Plains Geometry Conference" will be held at Wichita State University on March 17-20, 2014. The conference will feature important areas of geometry and geometric analysis with leading researchers as speakers. There will be 13 plenary lectures with plenty of time between talks to encourage discussion and the interchange of ideas. The funding will help to involve early-career mathematicians, including graduate students and postdocs. Particular attention will be paid to identifying and supporting women and other members of underrepresented groups. The organizers have pledged that at least 50% of the speakers at the conference will be female. The focus of the conference is on metric geometry in the broadest possible sense and the relationship between global metric geometry and topology, including methods of Riemannian and Semi-Riemannian geometry as well as Alexandrov geometry and other singular geometric spaces. Key areas represented will be Metric geometry, Geometric flows, Lorentzian Geometry, Einstein Metrics, Ricci solitons and Mathematical General Relativity. The overlap between these areas makes very real the possibility for cross-collaboration among the participants. The webpage for the conference can be found at: http://www.math.wichita.edu/SGPGeometryConference/
“烟雾大平原几何会议”将于2014年3月17日至20日在威奇托州立大学举行。会议将以几何和几何分析的重要领域为特色,主要研究人员将担任演讲者。将有13个全体讲座,在讲座之间有足够的时间来鼓励讨论和思想交流。 这笔资金将有助于吸引早期职业数学家,包括研究生和博士后。将特别注意查明和支持妇女和代表性不足群体的其他成员。组织者承诺,会议上至少50%的发言者将是女性。会议的重点是度量几何在最广泛的意义上和全球度量几何和拓扑之间的关系,包括黎曼和半黎曼几何以及亚历山德罗夫几何和其他奇异几何空间的方法。代表的关键领域将是度量几何,几何流,洛伦兹几何,爱因斯坦引力波,里奇孤子和数学广义相对论。这些领域之间的重叠使得参与者之间的相互协作成为非常真实的可能性。会议的网页可以在以下网址找到:http://www.math.wichita.edu/SGPGeometryConference/
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Catherine Searle其他文献
Regularization via Cheeger deformations
- DOI:
10.1007/s10455-015-9471-3 - 发表时间:
2015-06-07 - 期刊:
- 影响因子:0.700
- 作者:
Catherine Searle;Pedro Solórzano;Frederick Wilhelm - 通讯作者:
Frederick Wilhelm
Global G-Manifold Reductions and Resolutions
- DOI:
10.1023/a:1006740932080 - 发表时间:
2000-08-01 - 期刊:
- 影响因子:0.700
- 作者:
Karsten Grove;Catherine Searle - 通讯作者:
Catherine Searle
Mathematisches Forschungsinstitut Oberwolfach Report No . 01 / 2012 DOI : 10 . 4171 / OWR / 2012 / 01 Mini-Workshop : Manifolds with Lower Curvature Bounds
奥伯沃尔法赫数学研究所报告编号。
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Guofang Wei;Catherine Searle - 通讯作者:
Catherine Searle
Linear Bounds for the Lengths of Geodesics on Manifolds with Curvature Bounded Below
- DOI:
10.1007/s12220-025-02003-6 - 发表时间:
2025-06-11 - 期刊:
- 影响因子:1.500
- 作者:
Isabel Beach;Haydée Contreras-Peruyero;Regina Rotman;Catherine Searle - 通讯作者:
Catherine Searle
Catherine Searle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Catherine Searle', 18)}}的其他基金
CAREER: Incorporating host phenology into the framework of biodiversity-disease relationships
职业:将寄主物候纳入生物多样性与疾病关系的框架中
- 批准号:
2044897 - 财政年份:2022
- 资助金额:
$ 3.15万 - 项目类别:
Continuing Grant
BEE: Evolutionary rescue in response to infectious disease: when will populations be rescued from pathogens?
BEE:应对传染病的进化救援:何时才能将人群从病原体中拯救出来?
- 批准号:
1856710 - 财政年份:2019
- 资助金额:
$ 3.15万 - 项目类别:
Standard Grant
Midwest Geometry Conference 2019-2021
中西部几何会议 2019-2021
- 批准号:
1856293 - 财政年份:2019
- 资助金额:
$ 3.15万 - 项目类别:
Standard Grant
Lower Curvature Bounds, Symmetries, and Topology
较低的曲率界限、对称性和拓扑
- 批准号:
1611780 - 财政年份:2016
- 资助金额:
$ 3.15万 - 项目类别:
Standard Grant
Smoky Cascade Geometry Conference, March 19-21, 2014
Smoky Cascade 几何会议,2014 年 3 月 19-21 日
- 批准号:
1408592 - 财政年份:2014
- 资助金额:
$ 3.15万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Human-induced Soil Change on the U.S. Great Plains
职业:美国大平原上人为引起的土壤变化
- 批准号:
2338373 - 财政年份:2024
- 资助金额:
$ 3.15万 - 项目类别:
Continuing Grant
Conference: 2024 Great Plains Operator Theory Symposium
会议:2024年大平原算子理论研讨会
- 批准号:
2400046 - 财政年份:2024
- 资助金额:
$ 3.15万 - 项目类别:
Standard Grant
NSF I-Corps Hub (Track 2): Great Plains Region
NSF I-Corps 中心(轨道 2):大平原地区
- 批准号:
2229452 - 财政年份:2023
- 资助金额:
$ 3.15万 - 项目类别:
Cooperative Agreement
Environmental Health Research for Teachers and High School Students (EARTH) in the Great Northern Plains
北方大平原教师和高中生环境健康研究(EARTH)
- 批准号:
10594258 - 财政年份:2023
- 资助金额:
$ 3.15万 - 项目类别:
Collaborative Research: Diagnosing the Impacts of Blowing Snow in the Northern Great Plains Using Novel Instrumentation and Coupled Models
合作研究:使用新型仪器和耦合模型诊断北部大平原吹雪的影响
- 批准号:
2233182 - 财政年份:2023
- 资助金额:
$ 3.15万 - 项目类别:
Standard Grant
CC* Regional Computing: Great Plains Extended Network of GPUs for Interactive Experimenters (GP-ENGINE)
CC* 区域计算:用于交互式实验者的 Great Plains GPU 扩展网络 (GP-ENGINE)
- 批准号:
2322218 - 财政年份:2023
- 资助金额:
$ 3.15万 - 项目类别:
Standard Grant
Collaborative Research: Diagnosing the Impacts of Blowing Snow in the Northern Great Plains Using Novel Instrumentation and Coupled Models
合作研究:使用新型仪器和耦合模型诊断北部大平原吹雪的影响
- 批准号:
2233181 - 财政年份:2023
- 资助金额:
$ 3.15万 - 项目类别:
Standard Grant
Conference: 2023 Great Plains Operator Theory Symposium
会议:2023年大平原算子理论研讨会
- 批准号:
2247732 - 财政年份:2023
- 资助金额:
$ 3.15万 - 项目类别:
Standard Grant
Collaborative Research: P2C2--Medieval to Modern Climate Variability and Climate Change in the Great Plains
合作研究:P2C2——中世纪到现代的气候变率和大平原的气候变化
- 批准号:
2201243 - 财政年份:2022
- 资助金额:
$ 3.15万 - 项目类别:
Standard Grant
Nature of a Low Velocity Anomaly in the Mantle Transition Zone Beneath the Western Great Plains
西部大平原地幔过渡带低速异常的性质
- 批准号:
2149587 - 财政年份:2022
- 资助金额:
$ 3.15万 - 项目类别:
Standard Grant














{{item.name}}会员




