RAPID: Capturing the physics of mountain uplift near the South Alpine Fault New Zealand
RAPID:捕捉新西兰南阿尔卑斯断层附近山脉隆起的物理现象
基本信息
- 批准号:1519035
- 负责人:
- 金额:$ 3.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-01-15 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Although mountains are commonly considered fixtures in the landscape, at geological time-scales they are transient phenomena that exist only where the competing processes of rock uplift and erosion are almost exactly balanced. Where uplift exceeds erosion the height of mountains increase. Without uplift a mountain range will eventually be eroded to gentle hills, and eventually to a flat plain. Three types of processes can account for the rise of rocks within a mountain range. The first is caused by squeezing a rock, akin to squeezing a rubber eraser horizontally whose surface will rise in proportion to the amount of horizontal contraction. The second is caused by horizontal slip toward a subsurface ramp, a thrust fault, which is similar to rock rising on an elevator powered by plate tectonics. The third process causes rocks to rise in response to the incision of valleys and the removal of rock by rivers. This rise (known as isostasy) is similar to the rise of an iceberg from the sea as its exposed surface is melted by warm air. Each of these processes results in the rise of rocks, but the mass lost in each case is different. By measuring the rise of the rocks and the associated mass change in a mountain range one can distinguish between these three mechanisms. The rise of a mountain summit can easily be measured using GPS methods. The reduction of mass in a mountain range can be measured with a gravity meter. The PI measured both in the southern Alps of New Zealand in January 2000 but to determine the answer a second measurement is need. GPS measurements indicate the height has increased by about 80 mm in the past 15 years. In January 2015 the PI shall for the first time measure the reduction of gravity using the NSF absolute gravimeter. Unless an earthquake intervenes, the mechanisms that cause the high elevations of mountains in the southern Alps of New Zealand will be revealed. Should an earthquake occur before the measurements are undertaken, however, the answer may be rendered ambiguous by mass movements accompanying the landslides triggered by severe shaking. For this reason it is urgent to have this NSF RAPID award and make a timely measurement in the southern Alps of New Zealand. In 2000, NSF funded 16 measurements of absolute value of gravity in New Zealand, mostly near the Southern Alps to investigate the physics of interseismic mountain uplift using a combination of gravity (which is sensitive to local density variations) and GPS (which is not). The FG5 gravimeter is uniquely drift-free since it measures the acceleration of a freely falling mirror in a vacuum to an accuracy of 10^-11 using an atomic clock and a stabilized laser. Proposed mountain building mechanisms (Poissons-ratio uplift, listric fault slip, or erosion-induced isostatic uplift) are associated with different ratios of uplift to gravity decrease. Now, 15 years later, 8 cm of uplift has occurred and the PI plans to take the same gravimeter to the same summit points to determine the associated lowering in gravity. The accuracy of the gravimeter is 1 µGal, and the decrease in gravity should be about 27 µGal- a significant signal-to-noise ratio. Urgency is associated with the measurements in that should a local earthquake occur, as it did near the Christchurch measurements, landslides may render the gravity signal ambiguous. The Alpine fault is in fact many decades past its median recurrence interval and the probability of rupture in a Mw8 earthquake is sufficiently high that a device to capture its slip velocity operated in the next few years has a significant chance of doing so. Although the propagation velocity of a rupture can easily be quantified from seismometers (2.5-3.5 km/s) the sliding velocity of the surface fault (0.1-10m/s) has hitherto never been measured. During the gravity measurements suitable locations to install two rupture meters will be identified. Each consists of a graphite rod anchored obliquely across the fault, that pulls a wire from a rotating drum during fault slip. Its measurement range is 13 m, its resolution is 0.1 mm, its sampling rate is 1 s and the systems can run indefinitely on solar panels.
虽然山脉通常被认为是景观中的固定物,但在地质时间尺度上,它们是短暂的现象,只存在于岩石隆起和侵蚀的竞争过程几乎完全平衡的地方。 在隆起超过侵蚀的地方,山的高度增加。 没有隆起,山脉最终会被侵蚀成平缓的丘陵,最终变成平坦的平原。 三种类型的过程可以解释山脉中岩石的上升。 第一种是通过挤压岩石引起的,类似于水平挤压橡皮擦,其表面将与水平收缩的量成比例地上升。第二种是由水平滑动向地下斜坡,逆冲断层,这类似于岩石上升的电梯由板块构造。 第三个过程导致岩石上升,以响应山谷的切割和河流的岩石移动。 这种上升(称为等熵线)类似于冰山从海上升起,因为其暴露的表面被温暖的空气融化。 这些过程中的每一个都导致岩石的上升,但在每种情况下损失的质量是不同的。 通过测量山脉中岩石的上升和相关的质量变化,人们可以区分这三种机制。 山顶的上升可以很容易地用GPS方法测量。山脉中质量的减少可以用重力计来测量。 PI于2000年1月在新西兰南部阿尔卑斯山进行了测量,但为了确定答案,需要进行第二次测量。GPS测量显示,在过去的15年里,高度增加了约80毫米。 2015年1月,PI将首次使用NSF绝对重力仪测量重力的减少。 除非发生地震,否则造成新西兰南部阿尔卑斯山高海拔的机制将被揭示。 然而,如果在测量之前发生地震,那么伴随着剧烈震动引发的山体滑坡的大规模运动可能会使答案变得模糊不清。因此,迫切需要获得NSF RAPID奖,并在新西兰南部阿尔卑斯山进行及时的测量。 2000年,国家科学基金会资助了新西兰16次重力绝对值测量,主要是在南阿尔卑斯山附近,利用重力(对当地密度变化敏感)和全球定位系统(不敏感)研究地震间山脉隆起的物理学。 FG 5重力仪是独一无二的无漂移重力仪,因为它使用原子钟和稳定激光测量真空中自由下落的镜子的加速度,精度达到10^-11。建议的造山机制(泊松比隆起,铲形断层滑动,或侵蚀引起的均衡隆起)与不同比例的隆起重力下降。现在,15年后,8厘米的隆起已经发生,PI计划采取相同的重力仪到相同的顶点,以确定相关的重力下降。重力仪的精度是1 µGal,重力的下降应该是27 µGal-一个显著的信噪比。紧急性与测量有关,因为如果发生当地地震,就像基督城附近的测量一样,山体滑坡可能会使重力信号模糊不清。事实上,阿尔卑斯山断层已经过了几十年的中位复发间隔,Mw 8级地震破裂的概率足够高,因此在未来几年内运行的捕获其滑动速度的设备有很大的机会这样做。虽然破裂的传播速度可以很容易地从地震仪(2.5-3.5公里/秒)量化,但地表断层的滑动速度(0.1- 10米/秒)迄今从未被测量过。在重力测量期间,将确定安装两个破裂仪的合适位置。每一个都由一个斜跨断层锚定的石墨棒组成,在断层滑动期间,石墨棒从旋转的鼓中拉出一根电线。其测量范围为13米,分辨率为0.1毫米,采样率为1秒,系统可以在太阳能电池板上无限期运行。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roger Bilham其他文献
Remote sensing and the search for surface rupture, Haiti 2010
- DOI:
10.1007/s11069-013-0550-0 - 发表时间:
2013-01-23 - 期刊:
- 影响因子:3.700
- 作者:
Roger Bilham;Eric Fielding - 通讯作者:
Eric Fielding
The Iceland 1986 GPS geodetic survey: tectonic goals and data processing results
- DOI:
10.1007/bf00806254 - 发表时间:
1993-09-01 - 期刊:
- 影响因子:4.000
- 作者:
G. R. Foulger;G. Beutler;Roger Bilham;Pall Einarsson;S. Fankhauser;W. Gurtner;U. Hugentobler;W. Jason Morgan;M. Rothacher;Gunnar Thorbergsson;U. Wild - 通讯作者:
U. Wild
The Flowsolder<sup>®</sup> Machine Patent, GB798701 – 50th Anniversary
- DOI:
10.1016/j.wpi.2007.05.006 - 发表时间:
2008-03-01 - 期刊:
- 影响因子:
- 作者:
Roger Bilham - 通讯作者:
Roger Bilham
Characteristic Slow‐Slip Events on the Superstition Hills Fault, Southern California
南加州迷信山断层上的特征慢滑事件
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:5.2
- 作者:
Ellis J. Vavra;Yuri Fialko;Thomas Rockwell;Roger Bilham;Petra Štěpančíková;Jakub Stemberk;Petr Tábořík;Josef Stemberk - 通讯作者:
Josef Stemberk
Invisible faults under shaky ground
不稳定地面下的隐形断层
- DOI:
10.1038/ngeo1000 - 发表时间:
2010-10-29 - 期刊:
- 影响因子:16.100
- 作者:
Roger Bilham - 通讯作者:
Roger Bilham
Roger Bilham的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roger Bilham', 18)}}的其他基金
RAPID: The East Anatolian fault earthquake sequence of 6 February 2023: epicentral afterslip and anticipated future rupture propagation
RAPID:2023 年 2 月 6 日东安纳托利亚断层地震序列:震中后滑和预期的未来破裂传播
- 批准号:
2318733 - 财政年份:2023
- 资助金额:
$ 3.15万 - 项目类别:
Standard Grant
Collaborative Research: Geodetic imaging of the interplay between creep, locking, earthquakes and land subsidence along the Chaman plate boundary
合作研究:查曼板块边界蠕变、锁定、地震和地面沉降之间相互作用的大地测量成像
- 批准号:
2028557 - 财政年份:2021
- 资助金额:
$ 3.15万 - 项目类别:
Standard Grant
RAPID: Capture of ephemeral fault slip data from the North Anatolian slow slip event Dec2019 and triggered slip data from the East Anatolian Mw=6.8 earthquake
RAPID:捕获 2019 年 12 月北安纳托利亚慢滑事件的短暂断层滑动数据以及东安纳托利亚 Mw=6.8 地震的触发滑动数据
- 批准号:
2019910 - 财政年份:2020
- 资助金额:
$ 3.15万 - 项目类别:
Standard Grant
RAPID - Afterslip and triggered slip associated with the Ridgecrest earthquake sequence
RAPID - 与 Ridgecrest 地震序列相关的后滑和触发滑移
- 批准号:
1941558 - 财政年份:2019
- 资助金额:
$ 3.15万 - 项目类别:
Standard Grant
Collaborative Research: GeoGONAF: Analysis of active deformation and strain transfer along the Izmit Bay-Marmara Sea segment of the North Anatolian Fault
合作研究:GeoGONAF:北安纳托利亚断层伊兹米特湾-马尔马拉海段的活动变形和应变传递分析
- 批准号:
1622720 - 财政年份:2016
- 资助金额:
$ 3.15万 - 项目类别:
Standard Grant
Collaborative Research: The Nepal Earthquake and Limits on Moment, Fault Geometry and Time Dependent Stress Changes
合作研究:尼泊尔地震以及力矩、断层几何形状和随时间变化的应力变化的限制
- 批准号:
1546636 - 财政年份:2015
- 资助金额:
$ 3.15万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: GeoGONAF - An observatory to study the active deformation and strain transfer along the Izmit Bay-Marmara Sea segment of the North Anatolian Fault
合作研究:RAPID:GeoGONAF - 研究北安纳托利亚断层伊兹米特湾-马尔马拉海段活动变形和应变传递的观测站
- 批准号:
1349851 - 财政年份:2013
- 资助金额:
$ 3.15万 - 项目类别:
Standard Grant
Strain Partitioning in Northwest Venezuela: Potential for a Great Quake
委内瑞拉西北部的应变分区:发生大地震的可能性
- 批准号:
1215782 - 财政年份:2012
- 资助金额:
$ 3.15万 - 项目类别:
Standard Grant
RAPID: Haiti Post-Seismic Deformation: Tide/Tsunami Gauges on Leogane Coast
RAPID:海地震后形变:莱奥甘海岸的潮汐/海啸测量仪
- 批准号:
1033167 - 财政年份:2010
- 资助金额:
$ 3.15万 - 项目类别:
Standard Grant
RAPID: Fault Creep Following the Mw=7.2 Sierra El Mayor Earthquake of 4 April
RAPID:4 月 4 日 Mw=7.2 Sierra El Mayor 地震后断层蠕变
- 批准号:
1039474 - 财政年份:2010
- 资助金额:
$ 3.15万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Capturing the translation of wave climate to coastal change on rocky shorelines across scales
职业:在不同尺度的岩石海岸线上捕捉波浪气候对沿海变化的转化
- 批准号:
2339542 - 财政年份:2024
- 资助金额:
$ 3.15万 - 项目类别:
Continuing Grant
CAREER: Towards Environment-Aware Adaptive Safety for Learning-Enabled Multiagent Systems with Application to Target Drone Capturing
职业:为支持学习的多智能体系统实现环境感知的自适应安全,并应用于目标无人机捕获
- 批准号:
2336189 - 财政年份:2024
- 资助金额:
$ 3.15万 - 项目类别:
Continuing Grant
2DSPEC - Simulating two-dimensional electronic spectroscopy: Capturing the complexities of photo-induced excitedstate molecular processes
2DSPEC - 模拟二维电子光谱:捕获光诱导激发态分子过程的复杂性
- 批准号:
EP/Y037383/1 - 财政年份:2024
- 资助金额:
$ 3.15万 - 项目类别:
Fellowship
Capturing Oceanic Submesoscales, Stirring and Mixing with Sound and Simulations
通过声音和模拟捕捉海洋亚尺度、搅拌和混合
- 批准号:
EP/Y014693/1 - 财政年份:2024
- 资助金额:
$ 3.15万 - 项目类别:
Research Grant
Capturing Oceanic Submesoscales, Stirring, and Mixing with Sound and Simulations
通过声音和模拟捕捉海洋亚尺度、搅拌和混合
- 批准号:
MR/X035611/1 - 财政年份:2024
- 资助金额:
$ 3.15万 - 项目类别:
Fellowship
FMSG: Bio: RAMP-Bio-CAFe: Routing Advanced Manufacturing of BioPolymer(s): Capturing Agri-feedstocks in Cell free Factories
FMSG:生物:RAMP-Bio-CAFe:生物聚合物的先进制造路线:在无细胞工厂中捕获农业原料
- 批准号:
2328291 - 财政年份:2023
- 资助金额:
$ 3.15万 - 项目类别:
Standard Grant
Collaborative Research: BPE Track 2: Disability DCL - Capturing Narratives that Characterize Neurodivergent Strengths and Weaknesses
合作研究:BPE 轨道 2:残疾 DCL - 捕捉表征神经分歧优势和劣势的叙述
- 批准号:
2306831 - 财政年份:2023
- 资助金额:
$ 3.15万 - 项目类别:
Standard Grant
Collaborative Research: BPE Track 2: Disability DCL - Capturing Narratives that Characterize Neurodivergent Strengths and Weaknesses
合作研究:BPE 轨道 2:残疾 DCL - 捕捉表征神经分歧优势和劣势的叙述
- 批准号:
2306830 - 财政年份:2023
- 资助金额:
$ 3.15万 - 项目类别:
Standard Grant
Capturing forgotten voices: Syrian adolescents' experiences of displacement and humanitarian action in Jordan and Lebanon.
捕捉被遗忘的声音:叙利亚青少年在约旦和黎巴嫩的流离失所经历和人道主义行动。
- 批准号:
2885591 - 财政年份:2023
- 资助金额:
$ 3.15万 - 项目类别:
Studentship
Capturing, quantifying, and understanding combinatorial effects in small molecule signaling
捕获、量化和理解小分子信号传导中的组合效应
- 批准号:
10684528 - 财政年份:2023
- 资助金额:
$ 3.15万 - 项目类别: