Theory and Algorithms of Transformed L1 Minimization with Applications in Data Science
变换 L1 最小化的理论和算法及其在数据科学中的应用
基本信息
- 批准号:1522383
- 负责人:
- 金额:$ 29.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-15 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project studies computational methods to recover signals (images) from partial observations, a technique known as compressed sensing. The project addresses an outstanding issue in compressed sensing, in which redundancies or restrictions preclude the successful use of established techniques. The research investigates a class of functions that promote sparsity under robust conditions and can be minimized with efficient or fast algorithms. The computational tools studied in the project will enhance sensing capabilities in applications such as imaging in astronomy and radar, medical imaging, threat detection, and recommender systems. The project provides systematic training of graduate students towards advanced degrees in computational mathematics. The computational methods developed in the project will serve as a valuable tool for information technology and data sciences, benefitting the country and the general public in the digital age. The widely used convex function for sparse signal recovery is L1, which is known to introduce bias. This project studies a family of unbiased non-convex sparsity promoting functions called the transformed L1 (TL1). The TL1 minimization under a linear constraint can be solved by iterative thresholding methods with closed-form thresholding functions. The goal is to improve on L1 under robust sensing conditions when the constraint is ill-conditioned or the theoretical guarantees for successful application of the L1 method are not satisfied.
该研究项目研究从部分观测中恢复信号(图像)的计算方法,这种技术被称为压缩感知。 该项目解决了压缩传感中的一个突出问题,即冗余或限制妨碍了成功使用现有技术。 研究了一类在稳健条件下提高稀疏性的函数,并且可以用高效或快速的算法来最小化。该项目中研究的计算工具将增强天文学和雷达成像、医学成像、威胁检测和推荐系统等应用中的传感能力。 该项目为攻读计算数学高级学位的研究生提供系统的培训。该项目开发的计算方法将成为信息技术和数据科学的宝贵工具,在数字时代造福国家和公众。用于稀疏信号恢复的广泛使用的凸函数是L1,已知其引入偏差。本项目研究一族无偏非凸稀疏促进函数,称为变换L1(TL1)。线性约束下的TL1最小化可以通过具有封闭形式阈值函数的迭代阈值方法来解决。我们的目标是提高L1鲁棒传感条件下,当约束条件是病态的或成功应用的L1方法的理论保证不满意。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jack Xin其他文献
A structure-preserving scheme for computing effective diffusivity and anomalous diffusion phenomena of random flows
计算随机流的有效扩散率和反常扩散现象的结构保持方案
- DOI:
10.48550/arxiv.2405.19003 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Tan Zhang;Zhongjian Wang;Jack Xin;Zhiwen Zhang - 通讯作者:
Zhiwen Zhang
Finite Element Computation of KPP Front Speeds in Cellular and Cat#39;s Eye Flows
Cellular 和 Cat 中 KPP 前沿速度的有限元计算
- DOI:
- 发表时间:
- 期刊:
- 影响因子:2.5
- 作者:
沈丽华;Jack Xin;周爱辉 - 通讯作者:
周爱辉
Learning Sparse Neural Networks via \ell _0 and T \ell _1 by a Relaxed Variable Splitting Method with Application to Multi-scale Curve Classification
通过松弛变量分裂方法通过 ell _0 和 T ell _1 学习稀疏神经网络并应用于多尺度曲线分类
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Fanghui Xue;Jack Xin - 通讯作者:
Jack Xin
Design projects motivated and informed by the needs of severely disabled autistic children
设计项目以严重残疾自闭症儿童的需求为动力和信息
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
S. Warren;P. Prakash;D. Thompson;B. Natarajan;Charles Carlson;Kim Fowler;Edwin Brokesh;Jack Xin;W. Piersel;Janine Kesterson;Steve Stoffregen - 通讯作者:
Steve Stoffregen
Three $$l_1$$ Based Nonconvex Methods in Constructing Sparse Mean Reverting Portfolios
- DOI:
10.1007/s10915-017-0578-5 - 发表时间:
2017-10-20 - 期刊:
- 影响因子:3.300
- 作者:
Xiaolong Long;Knut Solna;Jack Xin - 通讯作者:
Jack Xin
Jack Xin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jack Xin', 18)}}的其他基金
Deep Particle Algorithms and Advection-Reaction-Diffusion Transport Problems
深层粒子算法与平流反应扩散传输问题
- 批准号:
2309520 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
- 批准号:
2219904 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
Computational and Mathematical Studies of Compression and Distillation Methods for Deep Neural Networks and Applications
深度神经网络压缩和蒸馏方法的计算和数学研究及应用
- 批准号:
2151235 - 财政年份:2022
- 资助金额:
$ 29.99万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Robust, Efficient, and Private Deep Learning Algorithms
FRG:协作研究:稳健、高效、私密的深度学习算法
- 批准号:
1952644 - 财政年份:2020
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
Computational and Mathematical Studies of Complexity Reduction Methods for Deep Neural Networks and Applications
深度神经网络复杂度降低方法的计算和数学研究及应用
- 批准号:
1854434 - 财政年份:2019
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Robust, Accurate and Efficient Graph-Structured RNN for Spatio-Temporal Forecasting and Anomaly Detection
合作研究:ATD:用于时空预测和异常检测的鲁棒、准确和高效的图结构 RNN
- 批准号:
1924548 - 财政年份:2019
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
BIGDATA: Collaborative Research: F: Foundations of Nonconvex Problems in BigData Science and Engineering: Models, Algorithms, and Analysis
BIGDATA:协作研究:F:大数据科学与工程中非凸问题的基础:模型、算法和分析
- 批准号:
1632935 - 财政年份:2016
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
Reaction-Diffusion Front Speeds in Chaotic and Stochastic Flows
混沌和随机流中的反应扩散前沿速度
- 批准号:
1211179 - 财政年份:2012
- 资助金额:
$ 29.99万 - 项目类别:
Continuing Grant
ATD: Blind and Template Assisted Source Separation Algorithms with Applications to Spectroscopic Data
ATD:盲和模板辅助源分离算法及其在光谱数据中的应用
- 批准号:
1222507 - 财政年份:2012
- 资助金额:
$ 29.99万 - 项目类别:
Continuing Grant
ADT: Sparse Blind Separation Algorithms of Spectral Mixtures and Applications
ADT:混合光谱的稀疏盲分离算法及应用
- 批准号:
0911277 - 财政年份:2009
- 资助金额:
$ 29.99万 - 项目类别:
Continuing Grant
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Continuing Grant














{{item.name}}会员




