Collaborative Research: ATD: Robust, Accurate and Efficient Graph-Structured RNN for Spatio-Temporal Forecasting and Anomaly Detection

合作研究:ATD:用于时空预测和异常检测的鲁棒、准确和高效的图结构 RNN

基本信息

  • 批准号:
    1924548
  • 负责人:
  • 金额:
    $ 13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-15 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

The project aims to develop robust, efficient, and transferrable deep learning algorithms for prediction and anomaly detection in human spatio-temporal dynamics. This will be a fundamental step in providing reliable and speedy decision support for mitigating infectious diseases and countering threats in a time varying and spatially complex environment. The project shall advance recent computational tools (deep neural networks) in adversarial conditions and on resource limited (low cost, low energy) platform, thereby contribute to information technology in adversarial learning, mobile computing and effective decision making. A broad range of applications include threat detection and prediction for traffic and public transportation networks, security and privacy critical data analysis and prediction, threat detection and error correction for hydraulic, electrical and nuclear power systems. The approaches to be used involve novel techniques in high dimensional non-smooth non-convex optimization and graph representation. Specifically, the project shall study (1) multi-scale graph-structured recurrent neural networks for spatio-temporal data modeling, prediction and anomaly detection; (2) adversarially robust, accurate, and transferable deep learning algorithms based on advection-diffusion equations; (3) efficient quantization algorithms under adversarial conditions to reduce the latency of deep networks. The projects shall train a diverse body of graduate and undergraduate students at the Irvine and Los Angeles campuses of University of California through collaborative education and research activities in applied mathematics, computer science, data science and social science.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在开发强大,高效和可转移的深度学习算法,用于人类时空动态的预测和异常检测。这将是在时变和空间复杂的环境中为减轻传染病和应对威胁提供可靠和快速决策支持的基本步骤。 该项目将在对抗条件下和资源有限(低成本,低能耗)的平台上推进最新的计算工具(深度神经网络),从而为对抗学习,移动的计算和有效决策中的信息技术做出贡献。广泛的应用包括交通和公共交通网络的威胁检测和预测、安全和隐私关键数据分析和预测、水力、电力和核电系统的威胁检测和错误纠正。 所使用的方法涉及高维非光滑非凸优化和图形表示的新技术。具体而言,该项目将研究(1)用于时空数据建模,预测和异常检测的多尺度图结构递归神经网络;(2)基于对流扩散方程的对抗性鲁棒,准确和可转移的深度学习算法;(3)对抗条件下的有效量化算法,以减少深度网络的延迟。该项目将通过应用数学、计算机科学、数据科学和社会科学方面的合作教育和研究活动,在加州大学欧文分校和洛杉矶校区培养多样化的研究生和本科生。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Recurrent Neural Network and Differential Equation Based Spatiotemporal Infectious Disease Model with Application to COVID-19
基于循环神经网络和微分方程的时空传染病模型及其在 COVID-19 中的应用
Structured Sparsity of Convolutional Neural Networks via Nonconvex Sparse Group Regularization
  • DOI:
    10.3389/fams.2020.529564
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kevin Bui;Fredrick Park;Shuai Zhang;Y. Qi;J. Xin
  • 通讯作者:
    Kevin Bui;Fredrick Park;Shuai Zhang;Y. Qi;J. Xin
Glassoformer: A Query-Sparse Transformer for Post-Fault Power Grid Voltage Prediction
A Spatial-temporal Graph based Hybrid Infectious Disease Model with Application to COVID-19
基于时空图的混合传染病模型及其在 COVID-19 中的应用
Computing Residual Diffusivity by Adaptive Basis Learning via Super-Resolution Deep Neural Networks
通过超分辨率深度神经网络的自适应基础学习计算残余扩散率
  • DOI:
    10.1007/978-3-030-38364-0_25
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lyu, Jiancheng;Xin, Jack;Yu, Yifeng
  • 通讯作者:
    Yu, Yifeng
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jack Xin其他文献

A structure-preserving scheme for computing effective diffusivity and anomalous diffusion phenomena of random flows
计算随机流的有效扩散率和反常扩散现象的结构保持方案
  • DOI:
    10.48550/arxiv.2405.19003
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tan Zhang;Zhongjian Wang;Jack Xin;Zhiwen Zhang
  • 通讯作者:
    Zhiwen Zhang
Finite Element Computation of KPP Front Speeds in Cellular and Cat#39;s Eye Flows
Cellular 和 Cat 中 KPP 前沿速度的有限元计算
Learning Sparse Neural Networks via \ell _0 and T \ell _1 by a Relaxed Variable Splitting Method with Application to Multi-scale Curve Classification
通过松弛变量分裂方法通过 ell _0 和 T ell _1 学习稀疏神经网络并应用于多尺度曲线分类
Design projects motivated and informed by the needs of severely disabled autistic children
设计项目以严重残疾自闭症儿童的需求为动力和信息
Three $$l_1$$ Based Nonconvex Methods in Constructing Sparse Mean Reverting Portfolios
  • DOI:
    10.1007/s10915-017-0578-5
  • 发表时间:
    2017-10-20
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Xiaolong Long;Knut Solna;Jack Xin
  • 通讯作者:
    Jack Xin

Jack Xin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jack Xin', 18)}}的其他基金

Deep Particle Algorithms and Advection-Reaction-Diffusion Transport Problems
深层粒子算法与平流反应扩散传输问题
  • 批准号:
    2309520
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219904
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Computational and Mathematical Studies of Compression and Distillation Methods for Deep Neural Networks and Applications
深度神经网络压缩和蒸馏方法的计算和数学研究及应用
  • 批准号:
    2151235
  • 财政年份:
    2022
  • 资助金额:
    $ 13万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Robust, Efficient, and Private Deep Learning Algorithms
FRG:协作研究:稳健、高效、私密的深度学习算法
  • 批准号:
    1952644
  • 财政年份:
    2020
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Computational and Mathematical Studies of Complexity Reduction Methods for Deep Neural Networks and Applications
深度神经网络复杂度降低方法的计算和数学研究及应用
  • 批准号:
    1854434
  • 财政年份:
    2019
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
BIGDATA: Collaborative Research: F: Foundations of Nonconvex Problems in BigData Science and Engineering: Models, Algorithms, and Analysis
BIGDATA:协作研究:F:大数据科学与工程中非凸问题的基础:模型、算法和分析
  • 批准号:
    1632935
  • 财政年份:
    2016
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Theory and Algorithms of Transformed L1 Minimization with Applications in Data Science
变换 L1 最小化的理论和算法及其在数据科学中的应用
  • 批准号:
    1522383
  • 财政年份:
    2015
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Reaction-Diffusion Front Speeds in Chaotic and Stochastic Flows
混沌和随机流中的反应扩散前沿速度
  • 批准号:
    1211179
  • 财政年份:
    2012
  • 资助金额:
    $ 13万
  • 项目类别:
    Continuing Grant
ATD: Blind and Template Assisted Source Separation Algorithms with Applications to Spectroscopic Data
ATD:盲和模板辅助源分离算法及其在光谱数据中的应用
  • 批准号:
    1222507
  • 财政年份:
    2012
  • 资助金额:
    $ 13万
  • 项目类别:
    Continuing Grant
ADT: Sparse Blind Separation Algorithms of Spectral Mixtures and Applications
ADT:混合光谱的稀疏盲分离算法及应用
  • 批准号:
    0911277
  • 财政年份:
    2009
  • 资助金额:
    $ 13万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219956
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: a-DMIT: a novel Distributed, MultI-channel, Topology-aware online monitoring framework of massive spatiotemporal data
合作研究:ATD:a-DMIT:一种新颖的分布式、多通道、拓扑感知的海量时空数据在线监测框架
  • 批准号:
    2220495
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
  • 批准号:
    2319370
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建​​模和风险缓解
  • 批准号:
    2319552
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219904
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
  • 批准号:
    2319371
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
  • 批准号:
    2319372
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建​​模和风险缓解
  • 批准号:
    2319551
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
  • 批准号:
    2220523
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
  • 批准号:
    2220529
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了