BIGDATA: Collaborative Research: F: Foundations of Nonconvex Problems in BigData Science and Engineering: Models, Algorithms, and Analysis

BIGDATA:协作研究:F:大数据科学与工程中非凸问题的基础:模型、算法和分析

基本信息

  • 批准号:
    1632935
  • 负责人:
  • 金额:
    $ 35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

In today's digital world, huge amounts of data, i.e., big data, can be found in almost every aspect of scientific research and human activity. These data need to be managed effectively for reliable prediction and inference to improve decision making. Statistical learning is an emergent scientific discipline wherein mathematical modeling, computational algorithms, and statistical analysis are jointly employed to address these challenging data management problems. Invariably, quantitative criteria need to be introduced for the overall learning process in order to gauge the quality of the solutions obtained. This research focuses on two important criteria: data fitness and sparsity representation of the underlying learning model. Potential applications of the results can be found in computational statistics, compressed sensing, imaging, machine learning, bio-informatics, portfolio selection, and decision making under uncertainty, among many areas involving big data.Till now, convex optimization has been the dominant methodology for statistical learning in which the two criteria employed are expressed by convex functions either to be optimized and/or set as constraints of the variables being sought. Recently, non-convex functions of the difference-of-convex (DC) type and the difference-of-convex algorithm (DCA) have been shown to yield superior results in many contexts and serve as the motivation for this project. The goal is to develop a solid foundation and a unified framework to address many fundamental issues in big data problems in which non-convexity and non-differentiability are present in the optimization problems to be solved. These two non-standard features in computational statistical learning are challenging and their rigorous treatment requires the fusion of expertise from different domains of mathematical sciences. Technical issues to be investigated will cover the optimality, sparsity, and statistical properties of computable solutions to the non-convex, non-smooth optimization problems arising from statistical learning and its many applications. Novel algorithms will be developed and tested first on synthetic data sets for preliminary experimentation and then on publicly available data sets for realism; comparisons will be made among different formulations of the learning problems.
在当今的数字世界中,大量的数据,即,大数据几乎可以在科学研究和人类活动的各个方面找到。 需要有效管理这些数据,以进行可靠的预测和推理,从而改善决策制定。 统计学习是一门新兴的科学学科,其中数学建模,计算算法和统计分析联合使用,以解决这些具有挑战性的数据管理问题。 因此,需要为整个学习过程引入量化标准,以衡量所获得解决方案的质量。本研究着重于两个重要的标准:数据适应度和底层学习模型的稀疏表示。 在涉及大数据的许多领域中,可以在计算统计、压缩感知、成像、机器学习、生物信息学、投资组合选择和不确定性下的决策中找到结果的潜在应用。凸优化已经成为统计学习的主要方法,其中所采用的两个标准由凸函数来表示,或者被优化,或者/或者被设置为所寻找的变量的约束。 最近,非凸函数的差分凸(DC)型和差分凸算法(DCA)已被证明在许多情况下产生上级的结果,并作为本项目的动机。 目标是开发一个坚实的基础和统一的框架,以解决大数据问题中的许多基本问题,其中非凸性和不可微性存在于待解决的优化问题中。计算统计学习中的这两个非标准特征是具有挑战性的,它们的严格处理需要融合来自不同数学科学领域的专业知识。 要调查的技术问题将涵盖最优性,稀疏性和统计特性的可计算解决方案的非凸,非光滑的优化问题所产生的统计学习及其许多应用。 新的算法将首先在合成数据集上进行初步实验和测试,然后在公开可用的数据集上进行现实主义;将在学习问题的不同配方之间进行比较。

项目成果

期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
BinaryRelax: A Relaxation Approach for Training Deep Neural Networks with Quantized Weights
  • DOI:
    10.1137/18m1166134
  • 发表时间:
    2018-01-01
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Yin, Penghang;Zhang, Shuai;Xin, Jack
  • 通讯作者:
    Xin, Jack
Blended coarse gradient descent for full quantization of deep neural networks
  • DOI:
    10.1007/s40687-018-0177-6
  • 发表时间:
    2018-08
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    Penghang Yin;Shuai Zhang;J. Lyu;S. Osher;Y. Qi;J. Xin
  • 通讯作者:
    Penghang Yin;Shuai Zhang;J. Lyu;S. Osher;Y. Qi;J. Xin
Learning Sparse Neural Networks via ℓ0 and Tℓ1 by a Relaxed Variable Splitting Method with Application to Multi-scale Curve Classification
通过松弛变量分裂方法通过α0和Tα1学习稀疏神经网络并应用于多尺度曲线分类
Computing Residual Diffusivity by Adaptive Basis Learning via Super-Resolution Deep Neural Networks
通过超分辨率深度神经网络的自适应基础学习计算残余扩散率
  • DOI:
    10.1007/978-3-030-38364-0_25
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lyu, Jiancheng;Xin, Jack;Yu, Yifeng
  • 通讯作者:
    Yu, Yifeng
Convergence of a Relaxed Variable Splitting Method for Learning Sparse Neural Networks via L1, L0, and transformed-L1 Penalties
通过 L1、L0 和变换 L1 惩罚学习稀疏神经网络的宽松变量分裂方法的收敛性
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jack Xin其他文献

A structure-preserving scheme for computing effective diffusivity and anomalous diffusion phenomena of random flows
计算随机流的有效扩散率和反常扩散现象的结构保持方案
  • DOI:
    10.48550/arxiv.2405.19003
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tan Zhang;Zhongjian Wang;Jack Xin;Zhiwen Zhang
  • 通讯作者:
    Zhiwen Zhang
Finite Element Computation of KPP Front Speeds in Cellular and Cat#39;s Eye Flows
Cellular 和 Cat 中 KPP 前沿速度的有限元计算
Learning Sparse Neural Networks via \ell _0 and T \ell _1 by a Relaxed Variable Splitting Method with Application to Multi-scale Curve Classification
通过松弛变量分裂方法通过 ell _0 和 T ell _1 学习稀疏神经网络并应用于多尺度曲线分类
Design projects motivated and informed by the needs of severely disabled autistic children
设计项目以严重残疾自闭症儿童的需求为动力和信息
Three $$l_1$$ Based Nonconvex Methods in Constructing Sparse Mean Reverting Portfolios
  • DOI:
    10.1007/s10915-017-0578-5
  • 发表时间:
    2017-10-20
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Xiaolong Long;Knut Solna;Jack Xin
  • 通讯作者:
    Jack Xin

Jack Xin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jack Xin', 18)}}的其他基金

Deep Particle Algorithms and Advection-Reaction-Diffusion Transport Problems
深层粒子算法与平流反应扩散传输问题
  • 批准号:
    2309520
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219904
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Computational and Mathematical Studies of Compression and Distillation Methods for Deep Neural Networks and Applications
深度神经网络压缩和蒸馏方法的计算和数学研究及应用
  • 批准号:
    2151235
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Robust, Efficient, and Private Deep Learning Algorithms
FRG:协作研究:稳健、高效、私密的深度学习算法
  • 批准号:
    1952644
  • 财政年份:
    2020
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Computational and Mathematical Studies of Complexity Reduction Methods for Deep Neural Networks and Applications
深度神经网络复杂度降低方法的计算和数学研究及应用
  • 批准号:
    1854434
  • 财政年份:
    2019
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Robust, Accurate and Efficient Graph-Structured RNN for Spatio-Temporal Forecasting and Anomaly Detection
合作研究:ATD:用于时空预测和异常检测的鲁棒、准确和高效的图结构 RNN
  • 批准号:
    1924548
  • 财政年份:
    2019
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Theory and Algorithms of Transformed L1 Minimization with Applications in Data Science
变换 L1 最小化的理论和算法及其在数据科学中的应用
  • 批准号:
    1522383
  • 财政年份:
    2015
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Reaction-Diffusion Front Speeds in Chaotic and Stochastic Flows
混沌和随机流中的反应扩散前沿速度
  • 批准号:
    1211179
  • 财政年份:
    2012
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
ATD: Blind and Template Assisted Source Separation Algorithms with Applications to Spectroscopic Data
ATD:盲和模板辅助源分离算法及其在光谱数据中的应用
  • 批准号:
    1222507
  • 财政年份:
    2012
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
ADT: Sparse Blind Separation Algorithms of Spectral Mixtures and Applications
ADT:混合光谱的稀疏盲分离算法及应用
  • 批准号:
    0911277
  • 财政年份:
    2009
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant

相似海外基金

BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    2348159
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
  • 批准号:
    2308649
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
BIGDATA: Collaborative Research: F: Holistic Optimization of Data-Driven Applications
BIGDATA:协作研究:F:数据驱动应用程序的整体优化
  • 批准号:
    2027516
  • 财政年份:
    2020
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Practical Analysis of Large-Scale Data with Lyme Disease Case Study
BIGDATA:F:协作研究:莱姆病案例研究大规模数据的实际分析
  • 批准号:
    1934319
  • 财政年份:
    2019
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Protecting Yourself from Wildfire Smoke: Big Data-Driven Adaptive Air Quality Prediction Methodologies
大数据:IA:协作研究:保护自己免受野火烟雾的侵害:大数据驱动的自适应空气质量预测方法
  • 批准号:
    1838022
  • 财政年份:
    2019
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Foundations of Responsible Data Management
大数据:F:协作研究:负责任的数据管理的基础
  • 批准号:
    1926250
  • 财政年份:
    2019
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
  • 批准号:
    1947584
  • 财政年份:
    2019
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    1837964
  • 财政年份:
    2019
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
  • 批准号:
    1838222
  • 财政年份:
    2019
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
  • 批准号:
    1838248
  • 财政年份:
    2019
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了