Constraining the Structure and Dynamics of the Upper Layers of the Convective Zone Using Accurate High Spatial Degree Modes Derived from GONG Observations

使用 GONG 观测得出的精确高空间度模式约束对流带上层的结构和动力学

基本信息

项目摘要

Our modern society is highly dependent on technology for all of its critical activities, including navigation, commerce, transportation, communication, power provision, and security. As a magnetic star, our Sun has disrupted, and will continue to threaten disrupting, these technology-dependent activities. In order to mitigate the inevitable risks, it is vital that we advance our understanding of the processes behind events such as flares and coronal mass ejections (CME). The solar magnetic field that underlies all of these phenomena arises from the flows present in the solar plasma. These flows are produced by the transport of energy through the solar interior. This 3-year research project is expected to improve our knowledge of the structure, dynamics and flows immediately below the surface of the Sun. This region is key to understanding and predicting solar activity. This research project features not only important academic research, but also promises a tangible and concrete benefit to our technologically powered society.This 3-year project is aimed at a better characterization of the Sun's near-surface layers (outermost 5% of the solar interior) using helioseismic techniques. A key question that this work will contribute to answering is: how and why does the Sun (and other Sun-like stars) vary? Using helioseismology, the project team will be able to infer and constrain changes in the structure and dynamics of the solar interior by extending the precise characterization of p-mode (or pressure-mode) oscillations to higher spatial degrees and tracking their changes with time. The technical aspect of this project is to derive accurate characteristics of high-degree modes, i.e., precise and unbiased estimates of mode frequency, line width, asymmetry and amplitude for spherical harmonics degrees in the range 200-900, using NSO's Global Oscillations Network Group (GONG) observations. The research work to be carried out would enhance the scientific return of the GONG mission, which has been supported by the NSF. Therefore, the project supports the Strategic Goals of the AGS Division in discovery, learning, diversity, and interdisciplinary research.
我们的现代社会高度依赖于技术的所有关键活动,包括导航,商业,运输,通信,电力供应和安全。 作为一颗磁性星星,我们的太阳已经破坏了,并将继续威胁破坏这些依赖技术的活动。 为了减轻不可避免的风险,我们必须进一步了解耀斑和日冕物质抛射(CME)等事件背后的过程。 所有这些现象背后的太阳磁场来自太阳等离子体中存在的流动。 这些流动是通过太阳内部的能量传输产生的。 这个为期3年的研究项目预计将提高我们对太阳表面以下结构,动力学和流动的了解。 这个区域是了解和预测太阳活动的关键。 该研究项目不仅具有重要的学术研究,而且还承诺为我们的技术驱动的社会带来切实和具体的好处。这个为期3年的项目旨在利用日震技术更好地描述太阳近地表层(太阳内部最外层的5%)。 这项工作将有助于回答的一个关键问题是:太阳(和其他类似太阳的恒星)是如何变化的? 利用日震学,项目小组将能够推断和限制太阳内部结构和动力学的变化,方法是将p模式(或压力模式)振荡的精确特征扩展到更高的空间程度,并跟踪其随时间的变化。 该项目的技术方面是导出高阶模式的准确特征,即,使用国家统计局全球振荡网络组的观测结果,对200-900度范围内的球谐模频率、线宽、不对称性和振幅进行精确和无偏估计。 即将开展的研究工作将提高由NSF支持的GONG使命的科学回报。 因此,该项目支持AGS部门在发现,学习,多样性和跨学科研究方面的战略目标。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sylvain Korzennik其他文献

Sylvain Korzennik的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sylvain Korzennik', 18)}}的其他基金

Study of the Solar Dynamics and its Evolution During Cycle 23 Based on an Improved Mode Fitting of a Solar Cycle Worth of Global Oscillation Network Group (GONG) Observations
基于改进的太阳周期模式拟合的第 23 周期太阳动力学及其演化研究值得全球振荡网络组 (GONG) 观测
  • 批准号:
    1037834
  • 财政年份:
    2010
  • 资助金额:
    $ 38.36万
  • 项目类别:
    Continuing Grant
Space Weather: Seismic Study of the Solar Subsurface Based on Robust Time-Distance Inferences Using Upgraded Global Oscillation Network Group (GONG+) Instrument Observations
空间天气:使用升级的全球振荡网络组 (GONG) 仪器观测,基于鲁棒时距推断的太阳地下地震研究
  • 批准号:
    0318390
  • 财政年份:
    2003
  • 资助金额:
    $ 38.36万
  • 项目类别:
    Continuing Grant
Exo-Planet Detection Using an Apodized Square Aperture and Dark Speckle
使用变迹方形孔径和暗散斑进行系外行星探测
  • 批准号:
    0123444
  • 财政年份:
    2002
  • 资助金额:
    $ 38.36万
  • 项目类别:
    Standard Grant
The Sixth SOHO and GONG 1998 Workshop; Boston, Massachusetts; June 1-4, 1998
1998第六届SOHO与GONG工作坊;
  • 批准号:
    9802842
  • 财政年份:
    1998
  • 资助金额:
    $ 38.36万
  • 项目类别:
    Standard Grant
Support for the SOHO VI/GONG '98 Workshop to be held in Boston, Massachusetts on June 1-4, 1998
支持将于 1998 年 6 月 1 日至 4 日在马萨诸塞州波士顿举行的 SOHO VI/GONG 98 研讨会
  • 批准号:
    9803423
  • 财政年份:
    1998
  • 资助金额:
    $ 38.36万
  • 项目类别:
    Standard Grant
Constraining the Solar Activity Cycle Using GONG Data
使用 GONG 数据约束太阳活动周期
  • 批准号:
    9521777
  • 财政年份:
    1996
  • 资助金额:
    $ 38.36万
  • 项目类别:
    Standard Grant

相似海外基金

Structure, Dynamics and Activity of Bacterial Secretosome
细菌分泌体的结构、动力学和活性
  • 批准号:
    BB/Y004531/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.36万
  • 项目类别:
    Research Grant
Protein Structure and Dynamics by Electron/Nuclear Paramagnetic Resonance
通过电子/核顺磁共振研究蛋白质结构和动力学
  • 批准号:
    DP240100273
  • 财政年份:
    2024
  • 资助金额:
    $ 38.36万
  • 项目类别:
    Discovery Projects
Structure, Dynamics and Activity of the Bacterial Secretosome
细菌分泌体的结构、动力学和活性
  • 批准号:
    BB/Y004981/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.36万
  • 项目类别:
    Research Grant
CAREER: Dynamics and structure of comb polymer elastomers
职业:梳状聚合物弹性体的动力学和结构
  • 批准号:
    2338550
  • 财政年份:
    2024
  • 资助金额:
    $ 38.36万
  • 项目类别:
    Continuing Grant
Structure and dynamics of the subcontinental lithospheric mantle over the Central and Eastern North American continent, constrained by numerical modeling based on tomography models
基于层析成像模型的数值模拟约束北美大陆中部和东部次大陆岩石圈地幔的结构和动力学
  • 批准号:
    2240943
  • 财政年份:
    2023
  • 资助金额:
    $ 38.36万
  • 项目类别:
    Standard Grant
Collaborative Research: Structure, Dynamics, and Catalysis with Dilute Bimetallic and Single Atom Alloy Nanoparticles
合作研究:稀双金属和单原子合金纳米粒子的结构、动力学和催化作用
  • 批准号:
    2300020
  • 财政年份:
    2023
  • 资助金额:
    $ 38.36万
  • 项目类别:
    Standard Grant
Beyond structure - solving conformational dynamics for intractable proteins
超越结构 - 解决棘手蛋白质的构象动力学
  • 批准号:
    DP230102664
  • 财政年份:
    2023
  • 资助金额:
    $ 38.36万
  • 项目类别:
    Discovery Projects
Science for Boundary Lubrication - Essence of Low Friction Mechanism Based on Structure and Dynamics of Additive Adsorption Layer
边界润滑科学——基于添加剂吸附层结构和动力学的低摩擦机制本质
  • 批准号:
    23H05448
  • 财政年份:
    2023
  • 资助金额:
    $ 38.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Collaborative Research: Structure, Dynamics, and Catalysis with Dilute Bimetallic and Single Atom Alloy Nanoparticles
合作研究:稀双金属和单原子合金纳米粒子的结构、动力学和催化作用
  • 批准号:
    2300019
  • 财政年份:
    2023
  • 资助金额:
    $ 38.36万
  • 项目类别:
    Standard Grant
Nuclear Structure and Dynamics under extreme conditions
极端条件下的核结构和动力学
  • 批准号:
    ST/Y000013/1
  • 财政年份:
    2023
  • 资助金额:
    $ 38.36万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了