AitF: FULL: Collaborative Research: Provably Efficient GPU Algorithms
AitF:完整:协作研究:可证明高效的 GPU 算法
基本信息
- 批准号:1533564
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Graphics processing units (GPUs) were originally developed as specialized hardware exclusively for graphics rendering. In recent years they have become massively parallel systems with hundreds of processing cores supporting thousands of threads. Given their computational potential, they are now used to support general-purpose computation via high-level programming languages. As a result, they have become a standard platform for high-performance computing (HPC) simulations in natural sciences.However, there is still very little understanding of what types of algorithms translate into efficient GPU programs, and many implementations rely on a limited number of design patterns and many rounds of trial-and-error. There is a need for simple but accurate algorithmic models to get a wider algorithmic community involved in GPU computing. The project will develop such a model, intended to have the transformative effect of enabling algorithms researchers to focus their efforts on creating algorithms for GPUs in a way that is currently not possible, increasing the algorithmic knowledgebase in GPU computing. Over time, more efficient algorithms will lead to better utilization of computing resources and reuse of code implemented as libraries. Such a model for GPUs will also enable teaching GPU computing to a wider group of students, similarly to how sequential and PRAM algorithms are currently taught.This project will study the algorithmic aspects of GPU computing and will develop a simple but accurate theoretical model for GPUs, that will define clear guidelines and complexity metrics for algorithm evaluation. The PIs will develop and implement algorithms that will improve the state of the art code base of general purpose computation on GPUs in the areas of combinatorial algorithms, computational geometry, visualization, search algorithms, and data structures.
图形处理单元(GPU)最初被开发为专门用于图形渲染的专用硬件。近年来,它们已经成为具有数百个处理核心支持数千个线程的大规模并行系统。鉴于其计算潜力,它们现在用于通过高级编程语言支持通用计算。 因此,它们已经成为自然科学领域高性能计算(HPC)模拟的标准平台。然而,对于哪些类型的算法可以转化为高效的GPU程序,人们仍然知之甚少,许多实现依赖于有限数量的设计模式和多轮试错。需要简单但准确的算法模型,以使更广泛的算法社区参与GPU计算。该项目将开发这样一个模型,旨在使算法研究人员能够以目前不可能的方式集中精力为GPU创建算法,从而增加GPU计算中的算法知识库。随着时间的推移,更有效的算法将导致更好地利用计算资源和重用作为库实现的代码。该项目将研究GPU计算的算法方面,并将为GPU开发一个简单但准确的理论模型,为算法评估定义明确的指导方针和复杂性指标。PI将开发和实施算法,以改善组合算法、计算几何、可视化、搜索算法和数据结构领域GPU上通用计算的最新代码库。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Claudio Silva其他文献
A real-time fMRI-based neurofeedback system for rehabilitation of depressive symptoms
- DOI:
10.1016/j.ibror.2019.07.597 - 发表时间:
2019-09-01 - 期刊:
- 影响因子:
- 作者:
Ishani Thakkar;Mohit Rana;Cesar Salinas;Claudio Silva;Claudia Brett;Jaime Pereira;Ranganatha Sitaram;Sergio Ruiz - 通讯作者:
Sergio Ruiz
Seamounts in the southeastern Pacific Ocean and biodiversity on Juan Fernandez seamounts, Chile
东南太平洋海山和智利胡安·费尔南德斯海山的生物多样性
- DOI:
10.4067/s0718-560x2009000300020 - 发表时间:
2009 - 期刊:
- 影响因子:1
- 作者:
E. Yañez;Claudio Silva;Rodrigo Vega;F. Espíndola;L. Álvarez;N. Silva;S. Palma;S. Salinas;E. Menschel;V. Häussermann;D. Soto;Nadín Ramírez - 通讯作者:
Nadín Ramírez
Pelagic resources landings in central-southern Chile under the A2 climate change scenarios
A2气候变化情景下智利中南部的远洋资源登陆
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
E. Yañez;F. Plaza;Claudio Silva;Felipe Sanchez;M. A. Barbieri;Antonio Aranis - 通讯作者:
Antonio Aranis
Marijuana Use, Respiratory Symptoms, and Pulmonary Function
大麻使用、呼吸道症状和肺功能
- DOI:
10.7326/l18-0614 - 发表时间:
2019 - 期刊:
- 影响因子:39.2
- 作者:
I. Caviedes;G. Labarca;Claudio Silva;S. Fernández - 通讯作者:
S. Fernández
Modelación de episodios críticos de contaminación por material particulado (PM10) en Santiago de Chile: comparación de la eficiencia predictiva de los modelos paramétricos y no paramétricos
智利圣地亚哥的材料颗粒 (PM10) 污染事件批评模型:参数与无参数模型的效率预测比较
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Sergio Alvarado;Claudio Silva;D. Cáceres - 通讯作者:
D. Cáceres
Claudio Silva的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Claudio Silva', 18)}}的其他基金
MRI: Development of Reconfigurable Environmental Intelligence Platform
MRI:可重构环境智能平台的开发
- 批准号:
1828576 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
MRI: Acquisition of an Infrastructure for Prototyping Next-Generation Algorithms for Large-Scale Visualization, Data Processing and Analysis
MRI:采购用于大规模可视化、数据处理和分析的下一代算法原型设计的基础设施
- 批准号:
1229185 - 财政年份:2012
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Where the Ocean Meets the Cloud: Ad Hoc Longitudinal Analysis of Massive Mesh Data
海洋与云相遇的地方:海量网格数据的临时纵向分析
- 批准号:
1153728 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CRI: IAD: A Service-Oriented Architecture for The Computation, Visualization, and Management of Scientific Data
CRI:IAD:面向服务的科学数据计算、可视化和管理架构
- 批准号:
1153503 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Where the Ocean Meets the Cloud: Ad Hoc Longitudinal Analysis of Massive Mesh Data
海洋与云相遇的地方:海量网格数据的临时纵向分析
- 批准号:
0844546 - 财政年份:2009
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CRI: IAD: A Service-Oriented Architecture for The Computation, Visualization, and Management of Scientific Data
CRI:IAD:面向服务的科学数据计算、可视化和管理架构
- 批准号:
0751152 - 财政年份:2008
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
MSPA-MCS: Collaborative Research: New Methods for Robust, Feature-Preserving Surface Reconstruction
MSPA-MCS:协作研究:稳健、保留特征的表面重建的新方法
- 批准号:
0528201 - 财政年份:2005
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
U.S. Brazil Collaborative Research: 3D Modeling and Visualization
美国巴西合作研究:3D 建模和可视化
- 批准号:
0405402 - 财政年份:2004
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Interactive Out-Of-Core Visualization of Large Polygonal Datasets
大型多边形数据集的交互式核外可视化
- 批准号:
0306530 - 财政年份:2003
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Interactive Out-Of-Core Visualization of Large Polygonal Datasets
大型多边形数据集的交互式核外可视化
- 批准号:
0401498 - 财政年份:2003
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
相似国自然基金
钴基Full-Heusler合金的掺杂效应和薄膜噪声特性研究
- 批准号:51871067
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
AitF: FULL: Collaborative Research: PEARL: Perceptual Adaptive Representation Learning in the Wild
AitF:FULL:协作研究:PEARL:野外感知自适应表示学习
- 批准号:
1723379 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
AitF: FULL: Collaborative Research: Better Hashing for Applications: From Nuts & Bolts to Asymptotics
AitF:完整:协作研究:更好的应用程序哈希:来自坚果
- 批准号:
1535795 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
AitF: Full: Collaborative Research: Graph-theoretic algorithms to improve phylogenomic analyses
AitF:完整:协作研究:改进系统发育分析的图论算法
- 批准号:
1535977 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
AitF: FULL: Collaborative Research: PEARL: Perceptual Adaptive Representation Learning in the Wild
AitF:FULL:协作研究:PEARL:野外感知自适应表示学习
- 批准号:
1536003 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
AitF: Full: Collaborative Research: Modeling and Understanding Complex Influence in Social Networks
AitF:完整:协作研究:建模和理解社交网络中的复杂影响
- 批准号:
1535912 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
AitF: FULL: Collaborative Research: Optimizing Networked Systems with Limited Information
AitF:完整:协作研究:利用有限信息优化网络系统
- 批准号:
1535972 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
AitF: Full: Collaborative Research: Graph-theoretic algorithms to improve phylogenomic analyses
AitF:完整:协作研究:改进系统发育分析的图论算法
- 批准号:
1535989 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
AitF: FULL: Collaborative Research: PEARL: Perceptual Adaptive Representation Learning in the Wild
AitF:FULL:协作研究:PEARL:野外感知自适应表示学习
- 批准号:
1535797 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
AitF: FULL: Collaborative Research: Compact Data Structures for Traffic Measurement in Software-Defined Networks
AitF:完整:协作研究:软件定义网络中流量测量的紧凑数据结构
- 批准号:
1535878 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
AitF: FULL: Collaborative Research: Modeling and Understanding Complex Influence in Social Networks
AitF:完整:协作研究:建模和理解社交网络中的复杂影响
- 批准号:
1535900 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant














{{item.name}}会员




