XPS: FULL: CCA: Collaborative Research: Automatically Scalable Computation

XPS:完整:CCA:协作研究:自动可扩展计算

基本信息

  • 批准号:
    1533737
  • 负责人:
  • 金额:
    $ 52.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-01 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

For over thirty years, each generation of computers has been faster than the one that preceded it. This exponential scaling transformed the way we communicate, navigate, purchase, and conduct science. More recently, this dramatic growth in single processor performance has stopped and has been replaced by new generations of computers with more processors on them; for example, even the cell phones we carry have multiple processors in them. Writing software that effectively leverages multiple processing elements is difficult, and rewriting the decades of accumulated software is both difficult and costly. This research takes a different approach -- rather than converting sequential software into parallel software, this project develops ways to store and reuse computation. Imagine computing only when computer time and energy are cheap and plentiful, storing that computation, and then using it later, when computation might be limited or expensive. The approach used involves making informed predictions about computation likely to happen in the future, proactively executing likely computations in parallel with the actual computation, and then "jumping forward in time" if the actual execution arrives at any of the predicted computations that have already been completed. This research touches many areas within Computer Science, architecture, compilers, machine learning, systems, and theory. Additionally, exploiting massively parallel computation will produce immediate returns in multiple scientific fields that rely on computation.The approach used in this research views computational execution as moving a system through the enormously high dimensional space represented by its registers and memory of a conventional single-threaded processor. It uses machine learning algorithms to observe execution patterns and make predictions about likely future states of the computation. Based on these predictions, the system launches potentially large numbers of speculative threads to execute from these likely computations, while the actual computation proceeds serially. At strategically chosen points, the main computation queries the speculative executions to determine if any of the completed computation is useful; if it is, the main thread uses the speculative computation to immediately begin execution where the speculative computation left off, achieving a speed-up over the serial execution. This approach has the potential to be extremely scalable: the more cores, memory, and communication bandwidth available, the greater the potential for performance improvement. The approach also scales across programs -- if the program running today happens upon a state encountered by a program running yesterday, the program can reuse yesterday's computation. This project has the potential to break new ground for research in many areas in Computer Science touched by it.
三十多年来,每一代计算机都比上一代更快,这种指数级的扩展改变了我们交流、导航、购买和进行科学研究的方式。最近,这种单处理器性能的急剧增长已经停止,并被新一代的计算机所取代,这些计算机上有更多的处理器;例如,即使是我们携带的手机也有多个处理器。 编写有效利用多个处理元素的软件是困难的,重写几十年积累的软件既困难又昂贵。这项研究采取了不同的方法-而不是将顺序软件转换为并行软件,该项目开发了存储和重用计算的方法。想象一下,只有当计算机的时间和精力便宜而充足时才进行计算,存储计算,然后在计算可能有限或昂贵时使用它。 所使用的方法涉及对未来可能发生的计算进行明智的预测,与实际计算并行地主动执行可能的计算,然后如果实际执行到达任何已经完成的预测计算,则“及时向前跳”。 这项研究涉及计算机科学,架构,编译器,机器学习,系统和理论的许多领域。 此外,利用大规模并行计算将在依赖计算的多个科学领域产生立竿见影的效果,本研究中使用的方法将计算执行视为在传统单线程处理器的寄存器和内存所表示的极高维空间中移动系统。 它使用机器学习算法来观察执行模式,并对计算的未来可能状态进行预测。 基于这些预测,系统启动潜在的大量推测性线程以从这些可能的计算执行,而实际计算串行地进行。 在策略选择的点,主计算查询推测执行以确定是否有任何已完成的计算是有用的;如果是有用的,则主线程使用推测计算立即开始执行推测计算停止的地方,实现串行执行的加速。 这种方法具有极高的可扩展性:可用的内核、内存和通信带宽越多,性能改进的潜力就越大。这种方法还可以跨程序扩展--如果今天运行的程序遇到了昨天运行的程序遇到的状态,那么程序可以重用昨天的计算。这个项目有可能在计算机科学的许多领域开辟新的研究领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Margo Seltzer其他文献

Exploring the Whole Rashomon Set of Sparse Decision Trees
探索整个罗生门稀疏决策树集
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rui Xin;Chudi Zhong;Zhi Chen;Takuya Takagi;Margo Seltzer;Cynthia Rudin
  • 通讯作者:
    Cynthia Rudin
NetShaper: A Differentially Private Network Side-Channel Mitigation System
NetShaper:差分专用网络侧通道缓解系统
  • DOI:
    10.48550/arxiv.2310.06293
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Amir Sabzi;Rut Vora;Swati Goswami;Margo Seltzer;Mathias L'ecuyer;Aastha Mehta
  • 通讯作者:
    Aastha Mehta
CHERI-picking: Leveraging capability hardware for prefetching
CHERI-picking:利用功能硬件进行预取
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shaurya Patel;Sidhartha Agrawal;Alexandra Fedorova;Margo Seltzer
  • 通讯作者:
    Margo Seltzer
Synthesizing Device Drivers with Ghost Writer
使用 Ghost Writer 合成设备驱动程序
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bingyao Wang;Sepehr Noorafshan;Reto Achermann;Margo Seltzer
  • 通讯作者:
    Margo Seltzer
Accelerating MCMC with Parallel Predictive Prefetching
通过并行预测预取加速 MCMC
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Angelino;Eddie Kohler;Amos Waterland;Margo Seltzer;Ryan P. Adams
  • 通讯作者:
    Ryan P. Adams

Margo Seltzer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Margo Seltzer', 18)}}的其他基金

EAGER: Citation++: Data Citation, Provenance, and Documentation
EAGER:引文:数据引文、出处和文档
  • 批准号:
    1448123
  • 财政年份:
    2015
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Standard Grant
SI2-SSI: Collaborative Research: Bringing End-to-End Provenance to Scientists
SI2-SSI:协作研究:为科学家提供端到端的来源
  • 批准号:
    1450277
  • 财政年份:
    2015
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Standard Grant
XPS: FULL: CCA: Collaborative Research: Automatically Scalable Computation
XPS:完整:CCA:协作研究:自动可扩展计算
  • 批准号:
    1438983
  • 财政年份:
    2014
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Standard Grant
CSR: Medium: Collaborative Research: Workload-Aware Storage Architectures for Optimal Performance and Energy Efficiency
CSR:中:协作研究:实现最佳性能和能源效率的工作负载感知存储架构
  • 批准号:
    1302334
  • 财政年份:
    2013
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Standard Grant
NSF: Request for Funding Student Participation in the File and Storage Technology (FAST) 2010
NSF:申请资助学生参与文件和存储技术 (FAST) 2010
  • 批准号:
    1023169
  • 财政年份:
    2010
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Data Management Using Metadata and Provenance
协作研究:使用元数据和来源的可扩展数据管理
  • 批准号:
    0937914
  • 财政年份:
    2009
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Continuing Grant
SGER: PQL: A Path Query Language
SGER:PQL:路径查询语言
  • 批准号:
    0849392
  • 财政年份:
    2008
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Standard Grant
SENSORS: Hourglass: An Infrastructure for Sensor Network
传感器:沙漏:传感器网络基础设施
  • 批准号:
    0330244
  • 财政年份:
    2003
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Standard Grant
ANT: A Coherent Framework for Computer Science Education
ANT:计算机科学教育的连贯框架
  • 批准号:
    9950239
  • 财政年份:
    1999
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Standard Grant
CAREER: High Performance Storage Systems
职业:高性能存储系统
  • 批准号:
    9502156
  • 财政年份:
    1995
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

钴基Full-Heusler合金的掺杂效应和薄膜噪声特性研究
  • 批准号:
    51871067
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

XPS: FULL: CCA: Collaborative Research: SPARTA: a Stream-based Processor And Run-Time Architecture
XPS:完整:CCA:协作研究:SPARTA:基于流的处理器和运行时架构
  • 批准号:
    1547036
  • 财政年份:
    2015
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Standard Grant
XPS: FULL: CCA: Cymric: A Flexible Processor-Near-Memory System Architecture
XPS:完整:CCA:Cymric:灵活的处理器近内存系统架构
  • 批准号:
    1533767
  • 财政年份:
    2015
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Standard Grant
XPS: FULL: CCA: Collaborative Research: Automatically Scalable Computation
XPS:完整:CCA:协作研究:自动可扩展计算
  • 批准号:
    1533663
  • 财政年份:
    2015
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Standard Grant
XPS: FULL: CCA: NUMB: Exploiting Non-Uniform Memory Bandwidth for Computational Science
XPS:FULL:CCA:NUMB:利用非均匀内存带宽进行计算科学
  • 批准号:
    1533885
  • 财政年份:
    2015
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Standard Grant
XPS: Full: CCA: Enhancing Scalability and Energy Efficiency in Extreme-Scale Parallel Systems through Application-Aware Communication Reduction
XPS:完整:CCA:通过减少应用程序感知通信来增强超大规模并行系统的可扩展性和能源效率
  • 批准号:
    1438286
  • 财政年份:
    2014
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Standard Grant
XPS: FULL: CCA: Collaborative Research: CASH: Cost-aware Adaptation of Software and Hardware
XPS:完整:CCA:协作研究:CASH:软件和硬件的成本意识适应
  • 批准号:
    1439156
  • 财政年份:
    2014
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Standard Grant
XPS: FULL: CCA: Collaborative Research: SPARTA: a Stream-based Processor And Run-Time Architecture
XPS:完整:CCA:协作研究:SPARTA:基于流的处理器和运行时架构
  • 批准号:
    1439165
  • 财政年份:
    2014
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Standard Grant
XPS: FULL: CCA: Collaborative Research: Automatically Scalable Computation
XPS:完整:CCA:协作研究:自动可扩展计算
  • 批准号:
    1438983
  • 财政年份:
    2014
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Standard Grant
XPS: FULL: CCA: Collaborative Research: SPARTA: a Stream-based Processor And Run-Time Architecture
XPS:完整:CCA:协作研究:SPARTA:基于流的处理器和运行时架构
  • 批准号:
    1439097
  • 财政年份:
    2014
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Standard Grant
XPS: FULL: CCA: Collaborative Research: Automatically Scalable Computation
XPS:完整:CCA:协作研究:自动可扩展计算
  • 批准号:
    1439069
  • 财政年份:
    2014
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了