DMREF: Collaborative Research: Extreme Bandgap Semiconductors

DMREF:协作研究:极限带隙半导体

基本信息

  • 批准号:
    1534279
  • 负责人:
  • 金额:
    $ 31万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-10-01 至 2019-09-30
  • 项目状态:
    已结题

项目摘要

DMREF: Collaborative Research: Extreme Bandgap SemiconductorsNon-technical Description: The last two decades witnessed revolutionary advances in electronics and photonics by moving from ~1 electron Volt gap semiconductors (Silicon, Gallium Arsenide) to ~3 electron Volt Gallium Nitride and Silicon Carbide. This enabled energy-efficient light emitting diodes as replacement of incandescent bulbs, of high-voltage transistors that are cutting down wasted energy in every electrical device and machinery, and significantly expanded our fundamental knowledge of the materials science of semiconductors. Similar major advances are expected by aiming at extreme-bandgap semiconductors with energy gaps almost twice that of the wide-bandgap semiconductors. In addition to the new science, such materials will enable advances in healthcare and monitoring by creating deep-ultraviolet light-emitting diodes and lasers, and by significantly improving the efficiency and capability of semiconductors for electrical power conversion. Technical Description: Investigation of extreme-bandgap semiconductor materials with gaps of ~5-6 electron Volts has the potential to seed vast application arenas, and simultaneously advance fundamental material science and the physics of materials. The goal of this proposal is to develop the materials science of extreme bandgap semiconductors: Boron Nitride, Aluminum Nitride, their alloys and their heterostructures, and to investigate their properties for future applications in power electronics, deep-ultraviolet emitters, and more. Guided by rigorous mathematical and first-principles theory and modeling, the 4-investigator team will explore fundamental questions regarding epitaxial growth, polarization-induced conductivity control, band anti-crossing in highly mismatched materials, effects of isotope engineering on electronic and thermal transport. The proposed research project has the potential to be transformative in the field of material science and condensed matter physics under the umbrella of the Materials Genome Initiative because the research thrusts will develop: first principles predictive theory of electronic, optical, and thermal properties of these materials, epitaxy of these new semiconductors, isotope alloys and heterostructures, novel methods for controlling conductivity, understanding and control of the interplay of competing 3-dimensional vs 2-dimensional crystal phases, understanding of ultra high-field optical, electronic, thermal phenomena, of cation band-anticrossing physics, novel paradigms of isotope (neutron) engineering of optoelectronic, solid-state qubit, Cooper pairs, and thermoelectric properties. The proposed project will result in the training of graduate students in a fascinating emerging field of extreme bandgap semiconductor material science, with their many fundamental electronic, optical, and thermoelectric properties. In addition to expanding existing outreach programs, new activities with a special focus on the high-school students and underrepresented groups via Research Experiment for Teachers programs and direct visits for in-class demonstrations are proposed. That the team is distributed between Cornell, Michigan, and Stanford with complementary expertise will be exploited by regular exchange of graduate students for experiments, as well as theory and modeling work, to foster a truly collaborative mindset in the project. The dissemination of research by journal publications, presentations at conferences, its inclusion in courses taught by the invsetigators, and online (e.g. nanoHub) will ensure the outreach of the research proposed to the widest possible audience.
DMREF:合作研究:极端带隙半导体非技术描述:过去二十年见证了电子学和光子学的革命性进步,从~1电子伏特带隙半导体(硅,砷化镓)发展到~3电子伏特氮化镓和碳化硅。这使得节能发光二极管成为白炽灯泡的替代品,高压晶体管减少了每个电气设备和机械中的能源浪费,并显着扩展了我们对半导体材料科学的基础知识。 类似的重大进展预计将瞄准极端带隙半导体,其能隙几乎是宽带隙半导体的两倍。 除了新科学之外,这些材料还将通过创建深紫外发光二极管和激光器以及显着提高半导体的效率和电力转换能力来实现医疗保健和监测方面的进步。 技术说明:对禁带宽度为5-6电子伏特的极端带隙半导体材料的研究有可能为广阔的应用领域提供种子,同时推动基础材料科学和材料物理学的发展。 该提案的目标是发展极端带隙半导体的材料科学:氮化硼,氮化铝,它们的合金及其异质结构,并研究它们在电力电子,深紫外发射器等未来应用中的特性。在严格的数学和第一原理理论和建模的指导下,4名研究人员将探索有关外延生长,极化诱导电导率控制,高度失配材料中的带反交叉,同位素工程对电子和热传输的影响等基本问题。 拟议的研究项目有可能在材料基因组计划的保护下在材料科学和凝聚态物理学领域发生变革,因为研究重点将发展:这些材料的电子、光学和热性质的第一原理预测理论,这些新半导体、同位素合金和异质结构的外延,控制导电性的新方法,理解和控制竞争的三维与二维晶相的相互作用,理解超高场光学,电子,热现象,阳离子带反交叉物理,光电,固态量子位,库珀对和热电性能的同位素(中子)工程的新范例。拟议的项目将导致研究生在极端带隙半导体材料科学的一个迷人的新兴领域的培训,其许多基本的电子,光学和热电性能。除了扩大现有的外展计划,新的活动,特别侧重于高中学生和代表性不足的群体,通过研究实验教师方案和直接访问课堂演示提出。该团队分布在密歇根州的康奈尔大学和斯坦福大学之间,具有互补的专业知识,将通过定期交换研究生进行实验以及理论和建模工作来利用,以培养项目中真正的协作心态。通过期刊出版物、在会议上的介绍、将研究纳入研究人员教授的课程以及在线(如nanoHub)传播研究成果,将确保将拟议的研究成果推广到尽可能广泛的受众。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eric Pop其他文献

A Stacked Graphene-Al2O3 Nanopore Architecture for DNA Detection
  • DOI:
    10.1016/j.bpj.2011.11.3959
  • 发表时间:
    2012-01-31
  • 期刊:
  • 影响因子:
  • 作者:
    Shouvik Banerjee;B. Murali Venkatesan;David Estrada;Xiaozhong Jin;Vincent Dorgan;Vita Solovyeva;Myung-Ho Bae;Narayana Aluru;Eric Pop;Rashid Bashir
  • 通讯作者:
    Rashid Bashir
Recommended methods to study resistive switching devices
  • DOI:
    Advanced Electronic Materials
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
  • 作者:
    Mario Lanza;H.-S. Philip Wong;Eric Pop;Daniele Ielmini
  • 通讯作者:
    Daniele Ielmini
High Field Breakdown Characteristics of Carbon Nanotube Thin High Field Breakdown Characteristics of Carbon Nanotube Thin Film Transistors Film Transistors
碳纳米管薄膜的高场击穿特性 碳纳米管薄膜晶体管的高场击穿特性 薄膜晶体管
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Man Prakash;G. W. Woodruff;A. Behnam;Feifei Lian;David Estrada;Eric Pop;Satish Kumar;G. W. Woodruff
  • 通讯作者:
    G. W. Woodruff
What Are 2D Materials Good For?
SANTA: Self-aligned nanotrench ablation via Joule heating for probing sub-20 nm devices
  • DOI:
    10.1007/s12274-016-1180-0
  • 发表时间:
    2016-07-13
  • 期刊:
  • 影响因子:
    9.000
  • 作者:
    Feng Xiong;Sanchit Deshmukh;Sungduk Hong;Yuan Dai;Ashkan Behnam;Feifei Lian;Eric Pop
  • 通讯作者:
    Eric Pop

Eric Pop的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eric Pop', 18)}}的其他基金

EFRI 2-DARE: Energy Efficient Electronics with Atomic Layers (E3AL)
EFRI 2-DARE:具有原子层的节能电子器件 (E3AL)
  • 批准号:
    1542883
  • 财政年份:
    2015
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
CAREER: Fundamental and Device-Oriented Approach to Energy Efficient Carbon Nanoelectronics
职业:节能碳纳米电子学的基础和面向设备的方法
  • 批准号:
    1430530
  • 财政年份:
    2013
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Collaborative Research: Intrinsic Limits of Transport in Graphene Nanoribbons
合作研究:石墨烯纳米带传输的内在极限
  • 批准号:
    1346858
  • 财政年份:
    2013
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Collaborative Research: Intrinsic Limits of Transport in Graphene Nanoribbons
合作研究:石墨烯纳米带传输的内在极限
  • 批准号:
    1201982
  • 财政年份:
    2012
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
CAREER: Fundamental and Device-Oriented Approach to Energy Efficient Carbon Nanoelectronics
职业:节能碳纳米电子学的基础和面向设备的方法
  • 批准号:
    0954423
  • 财政年份:
    2010
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
EMT/NANO: Comprehensive Modeling of Power Dissipation, Leakage, and Non-Equilibrium Transport in Low-Dimensional Transistors
EMT/NANO:低维晶体管功耗、泄漏和非平衡传输的综合建模
  • 批准号:
    0829907
  • 财政年份:
    2008
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2409552
  • 财政年份:
    2024
  • 资助金额:
    $ 31万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2411603
  • 财政年份:
    2024
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
  • 批准号:
    2323458
  • 财政年份:
    2023
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
  • 批准号:
    2323470
  • 财政年份:
    2023
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
  • 批准号:
    2323715
  • 财政年份:
    2023
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2323667
  • 财政年份:
    2023
  • 资助金额:
    $ 31万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
  • 批准号:
    2323719
  • 财政年份:
    2023
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2323727
  • 财政年份:
    2023
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Data-Driven Discovery of the Processing Genome for Heterogenous Superalloy Microstructures
合作研究:DMREF:异质高温合金微结构加工基因组的数据驱动发现
  • 批准号:
    2323936
  • 财政年份:
    2023
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了