CAREER: Fundamental and Device-Oriented Approach to Energy Efficient Carbon Nanoelectronics
职业:节能碳纳米电子学的基础和面向设备的方法
基本信息
- 批准号:1430530
- 负责人:
- 金额:$ 30.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-01 至 2017-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this research is to examine fundamental aspects of energy dissipation in novel devices and nanomaterials, with focus on carbon electronics. The approach will study en-ergy loss and switching mechanisms in carbon nanotubes and graphene, which have great intrin-sic electrical and thermal properties, yet must be understood within in a device context. Intellectual Merit: Energy use in electronics today ranges from mobile devices (mW) to massive data centers (GW). Energy dissipation begins with nanoscale transistors, which are sur-prisingly inefficient and waste significant power as heat. This work will examine energy dissipa-tion in carbon nanoelectronics by (1) studying the role of remote phonons to find the most energy-efficient dielectrics, (2) exploring avalanche as an alternative switching mechanism, (3) developing models for Joule heating and thermal breakdown, and (4) validating them against electrical measurements and infrared thermal imaging. The fundamental knowledge derived from this research will also extend to all charge-based nanoelectronics. Broader Impacts: Optimizing energy dissipation in electronics will impact a wide range of technologies, and up to 10% of U.S. electricity use today. Progress in this area is crucial in a post-CMOS world, and has great environmental implications as well. This project will train students to think about fundamentals of energy dissipation, will engage minorities and women, and encourage undergraduates to publish. Work with local teachers and the Engineering Open House will engage local K-12 students, while a collaboration with the nanoHUB will reach a global audience. A remote (web-enabled) probe station will be built for testing nanoelectronics in class, eventually allowing access for anyone in the world to do cutting-edge device meas-urements.
本研究的目的是研究新型器件和纳米材料中能量耗散的基本方面,重点是碳电子学。该方法将研究碳纳米管和石墨烯中的能量损失和开关机制,这两种材料具有很强的内在电学和热学特性,但必须在器件环境中理解。智能优势:今天电子产品的能源使用范围从移动设备(mW)到大型数据中心(GW)。能量耗散始于纳米级晶体管,这种晶体管的效率低得惊人,而且会以热能的形式浪费大量电能。这项工作将通过(1)研究远程声子在寻找最节能介质中的作用,(2)探索雪崩作为替代开关机制,(3)开发焦耳加热和热击穿模型,以及(4)通过电测量和红外热成像验证它们,来检查碳纳米电子学中的能量耗散。从这项研究中获得的基础知识也将扩展到所有基于电荷的纳米电子学。更广泛的影响:优化电子产品的能量消耗将影响广泛的技术,并将影响美国目前10%的用电量。这一领域的进展在后cmos时代至关重要,而且对环境也有重大影响。这个项目将训练学生思考能量耗散的基本原理,将吸引少数民族和女性,并鼓励本科生发表。与当地教师和工程开放日的合作将吸引当地K-12学生,而与nanoHUB的合作将吸引全球观众。为了在课堂上测试纳米电子学,将建立一个远程(网络支持的)探针站,最终允许世界上任何人访问进行尖端设备测量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Pop其他文献
A Stacked Graphene-Al2O3 Nanopore Architecture for DNA Detection
- DOI:
10.1016/j.bpj.2011.11.3959 - 发表时间:
2012-01-31 - 期刊:
- 影响因子:
- 作者:
Shouvik Banerjee;B. Murali Venkatesan;David Estrada;Xiaozhong Jin;Vincent Dorgan;Vita Solovyeva;Myung-Ho Bae;Narayana Aluru;Eric Pop;Rashid Bashir - 通讯作者:
Rashid Bashir
High Field Breakdown Characteristics of Carbon Nanotube Thin High Field Breakdown Characteristics of Carbon Nanotube Thin Film Transistors Film Transistors
碳纳米管薄膜的高场击穿特性 碳纳米管薄膜晶体管的高场击穿特性 薄膜晶体管
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Man Prakash;G. W. Woodruff;A. Behnam;Feifei Lian;David Estrada;Eric Pop;Satish Kumar;G. W. Woodruff - 通讯作者:
G. W. Woodruff
Recommended methods to study resistive switching devices
- DOI:
Advanced Electronic Materials - 发表时间:
2018 - 期刊:
- 影响因子:
- 作者:
Mario Lanza;H.-S. Philip Wong;Eric Pop;Daniele Ielmini - 通讯作者:
Daniele Ielmini
What Are 2D Materials Good For?
- DOI:
10.1109/nmdc57951.2023.10343744 - 发表时间:
2023-10 - 期刊:
- 影响因子:0
- 作者:
Eric Pop - 通讯作者:
Eric Pop
SANTA: Self-aligned nanotrench ablation via Joule heating for probing sub-20 nm devices
- DOI:
10.1007/s12274-016-1180-0 - 发表时间:
2016-07-13 - 期刊:
- 影响因子:9.000
- 作者:
Feng Xiong;Sanchit Deshmukh;Sungduk Hong;Yuan Dai;Ashkan Behnam;Feifei Lian;Eric Pop - 通讯作者:
Eric Pop
Eric Pop的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric Pop', 18)}}的其他基金
DMREF: Collaborative Research: Extreme Bandgap Semiconductors
DMREF:协作研究:极限带隙半导体
- 批准号:
1534279 - 财政年份:2015
- 资助金额:
$ 30.14万 - 项目类别:
Standard Grant
EFRI 2-DARE: Energy Efficient Electronics with Atomic Layers (E3AL)
EFRI 2-DARE:具有原子层的节能电子器件 (E3AL)
- 批准号:
1542883 - 财政年份:2015
- 资助金额:
$ 30.14万 - 项目类别:
Standard Grant
Collaborative Research: Intrinsic Limits of Transport in Graphene Nanoribbons
合作研究:石墨烯纳米带传输的内在极限
- 批准号:
1346858 - 财政年份:2013
- 资助金额:
$ 30.14万 - 项目类别:
Standard Grant
Collaborative Research: Intrinsic Limits of Transport in Graphene Nanoribbons
合作研究:石墨烯纳米带传输的内在极限
- 批准号:
1201982 - 财政年份:2012
- 资助金额:
$ 30.14万 - 项目类别:
Standard Grant
CAREER: Fundamental and Device-Oriented Approach to Energy Efficient Carbon Nanoelectronics
职业:节能碳纳米电子学的基础和面向设备的方法
- 批准号:
0954423 - 财政年份:2010
- 资助金额:
$ 30.14万 - 项目类别:
Standard Grant
EMT/NANO: Comprehensive Modeling of Power Dissipation, Leakage, and Non-Equilibrium Transport in Low-Dimensional Transistors
EMT/NANO:低维晶体管功耗、泄漏和非平衡传输的综合建模
- 批准号:
0829907 - 财政年份:2008
- 资助金额:
$ 30.14万 - 项目类别:
Standard Grant
相似海外基金
Spin Current Phenomena in Non-Collinear Antiferromagnets:From Fundamental Physics to Device Concepts
非共线反铁磁体中的自旋流现象:从基础物理到器件概念
- 批准号:
2408972 - 财政年份:2023
- 资助金额:
$ 30.14万 - 项目类别:
Standard Grant
Experimental simulations of divertor plasma and fundamental studies on plasma detachment by using the linear plasma device
偏滤器等离子体的实验模拟及线性等离子体装置等离子体脱离的基础研究
- 批准号:
20J14206 - 财政年份:2020
- 资助金额:
$ 30.14万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Collaborative Research: Fundamental Study of Environmentally Stable and Lead-Free Chalcogenide Perovskites for Optoelectronic Device Engineering
合作研究:用于光电器件工程的环境稳定、无铅硫系钙钛矿的基础研究
- 批准号:
2013640 - 财政年份:2020
- 资助金额:
$ 30.14万 - 项目类别:
Standard Grant
Collaborative Research: Fundamental Study of Environmentally Stable and Lead-Free Chalcogenide Perovskites for Optoelectronic Device Engineering
合作研究:用于光电器件工程的环境稳定、无铅硫系钙钛矿的基础研究
- 批准号:
2013644 - 财政年份:2020
- 资助金额:
$ 30.14万 - 项目类别:
Standard Grant
Spin Current Phenomena in Non-Collinear Antiferromagnets:From Fundamental Physics to Device Concepts
非共线反铁磁体中的自旋流现象:从基础物理到器件概念
- 批准号:
1915849 - 财政年份:2019
- 资助金额:
$ 30.14万 - 项目类别:
Standard Grant
Accumulation of fundamental knowledge for development of new occlusion device in dogs and cats with atrial septal defect or ventricular septal defect
为犬猫房间隔缺损或室间隔缺损开发新型封堵器积累基础知识
- 批准号:
18H06035 - 财政年份:2018
- 资助金额:
$ 30.14万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
CAREER: Fundamental Electronic Device Performance and Reliability Investigation on Chalcogenide- and Oxide-based N- and P-type Materials for Large Area/Flexible Electronics
职业:用于大面积/柔性电子产品的硫族化物和氧化物基 N 型和 P 型材料的基础电子器件性能和可靠性研究
- 批准号:
1653343 - 财政年份:2017
- 资助金额:
$ 30.14万 - 项目类别:
Standard Grant
Semimetal (metal) mediated group-IV-semiconductor nanostructure formation and its application for next-generation fundamental device technologies
半金属(金属)介导的IV族半导体纳米结构形成及其在下一代基础器件技术中的应用
- 批准号:
17K06338 - 财政年份:2017
- 资助金额:
$ 30.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Establishment of fundamental technology for nanopore sensing device based on opto-electro detection principle by fusion process of MEMS and DNA
MEMS与DNA融合工艺建立基于光电检测原理的纳米孔传感器件基础技术
- 批准号:
16H03841 - 财政年份:2016
- 资助金额:
$ 30.14万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
SHF: Small: Exploiting the Negative Capacitance in a new Ferroelectric Device to Explore Innovative Design Solutions beyond the Fundamental Thermionic Limit of CMOS Technology
SHF:小型:利用新型铁电器件中的负电容探索超越 CMOS 技术基本热电子极限的创新设计解决方案
- 批准号:
1617443 - 财政年份:2016
- 资助金额:
$ 30.14万 - 项目类别:
Standard Grant