AitF: FULL: Collaborative Research: Optimizing Networked Systems with Limited Information
AitF:完整:协作研究:利用有限信息优化网络系统
基本信息
- 批准号:1535929
- 负责人:
- 金额:$ 35.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Over the past decades, the world's dominant computational infrastructure has gradually transitioned from individual personal computers to massive networked systems of unprecedented scale and complexity. Not only has this led to tremendous technological and engineering challenges, but it has also called into question fundamental assumptions in classical algorithmic theory. A defining distinction is the limited information that algorithms in such decentralized and heterogeneous systems have access to. For example, a content delivery network serves a heterogeneous set of end devices, and has to optimize performance often without knowledge of the device it is optimizing for. Similarly, a data center scheduler must be optimized for future demands that it is oblivious to. In this project, the PIs seek to address novel algorithmic questions in non-clairvoyant models of computation that arise in real world networked systems. The successful completion of this project will lead to new advances in building reliable and resilient information networks. The project will enable collaborations and exchange of ideas between theoreticians and practitioners, and will provide extensive training in real world algorithms to several graduate students, with attention paid to gender diversity and participation of under-represented groups. The goal of the project is to design novel algorithms with provable guarantees for networked systems in limited information settings. In particular, the PIs plan to address key algorithmic problems in the three dominant computational infrastructure models in the Internet: (a) data centers: allocating parallelizable jobs requiring multiple resources on processing nodes and clusters; (b) wide-area network of clusters: long-term planning of resource deployment and synergistic operations in the client-server model; and (c) P2P browser clouds: content delivery in web and gaming applications and swarm computing on a fabric of a large number of loosely coupled unreliable browsers. These problem domains are characterized by uncertainty and limited information for several reasons, including uncertainty about future predictions, autonomy of individual components in the networked system, and distributed implementation of the network architecture. The algorithms designed as part of this project will be evaluated on and optimized for real world testbeds.
在过去的几十年里,世界上占主导地位的计算基础设施已逐渐从个人计算机过渡到规模和复杂性前所未有的大规模网络系统。这不仅导致了巨大的技术和工程挑战,而且还对经典算法理论中的基本假设提出了质疑。一个明确的区别是,这种分散和异构系统中的算法可以访问的信息有限。例如,内容分发网络服务于一组异构的终端设备,并且必须经常在不知道其正在优化的设备的情况下优化性能。类似地,数据中心调度程序必须针对它所忽略的未来需求进行优化。在这个项目中,PI试图解决在真实的世界网络系统中出现的非透视计算模型中的新算法问题。该项目的成功完成将导致在建设可靠和有复原力的信息网络方面取得新的进展。该项目将促进理论家和实践者之间的合作和思想交流,并将为几名研究生提供真实的世界算法方面的广泛培训,同时关注性别多样性和代表性不足群体的参与。该项目的目标是在有限的信息设置中为网络系统设计具有可证明保证的新算法。具体而言,PI计划解决互联网中三种主要计算基础设施模型中的关键算法问题:(a)数据中心:在处理节点和集群上分配需要多个资源的可并行作业;(B)集群广域网:客户端-服务器模型中资源部署和协同操作的长期规划;以及(c)P2P浏览器云:Web和游戏应用程序中的内容交付以及大量松散耦合的不可靠浏览器结构上的群计算。这些问题域的特点是不确定性和有限的信息,有几个原因,包括未来预测的不确定性,在网络系统中的各个组件的自主性,和分布式实现的网络架构。作为该项目的一部分设计的算法将进行评估和优化的真实的世界的测试平台。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ravi Sundaram其他文献
SmartShift: Expanded Load Shifting Incentive Mechanism for Risk-Averse Consumers
SmartShift:针对规避风险的消费者扩大负荷转移激励机制
- DOI:
10.1609/aaai.v29i1.9240 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Bochao Shen;Balakrishnan Narayanaswamy;Ravi Sundaram - 通讯作者:
Ravi Sundaram
Cache Me If You Can: Capacitated Selfish Replication Games
如果可以的话缓存我:有能力的自私复制游戏
- DOI:
10.1007/978-3-642-29344-3_36 - 发表时间:
2012 - 期刊:
- 影响因子:5.3
- 作者:
R. Gopalakrishnan;D. Kanoulas;Naga Naresh Karuturi;C. Rangan;R. Rajaraman;Ravi Sundaram - 通讯作者:
Ravi Sundaram
Asthma Outcomes in North Shore-Long Island Jewish Health System (NS-LIJ Health System
- DOI:
10.1378/chest.124.4_meetingabstracts.138s - 发表时间:
2003-01-01 - 期刊:
- 影响因子:
- 作者:
Ali Mojaverian;Ravi Sundaram;Archana Mishra;Rubin Cohen;Alan Fein;Jill Karpel - 通讯作者:
Jill Karpel
Interactive proof system variants and approximation algorithms for optical networks
光网络的交互式证明系统变体和近似算法
- DOI:
- 发表时间:
1996 - 期刊:
- 影响因子:0
- 作者:
Ravi Sundaram - 通讯作者:
Ravi Sundaram
Alternation in interaction
互动交替
- DOI:
10.1007/pl00001607 - 发表时间:
1994 - 期刊:
- 影响因子:0
- 作者:
Marcos A. Kiwi;C. Lund;D. Spielman;A. Russell;Ravi Sundaram - 通讯作者:
Ravi Sundaram
Ravi Sundaram的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ravi Sundaram', 18)}}的其他基金
NeTS: Small: Collaborative Research: Advanced Algorithmic Tools for Discovery in Cognitive Radio Networks
NeTS:小型:协作研究:认知无线电网络中发现的高级算法工具
- 批准号:
1718286 - 财政年份:2017
- 资助金额:
$ 35.99万 - 项目类别:
Standard Grant
相似国自然基金
钴基Full-Heusler合金的掺杂效应和薄膜噪声特性研究
- 批准号:51871067
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
AitF: FULL: Collaborative Research: PEARL: Perceptual Adaptive Representation Learning in the Wild
AitF:FULL:协作研究:PEARL:野外感知自适应表示学习
- 批准号:
1723379 - 财政年份:2016
- 资助金额:
$ 35.99万 - 项目类别:
Standard Grant
AitF: FULL: Collaborative Research: Better Hashing for Applications: From Nuts & Bolts to Asymptotics
AitF:完整:协作研究:更好的应用程序哈希:来自坚果
- 批准号:
1535795 - 财政年份:2015
- 资助金额:
$ 35.99万 - 项目类别:
Standard Grant
AitF: Full: Collaborative Research: Graph-theoretic algorithms to improve phylogenomic analyses
AitF:完整:协作研究:改进系统发育分析的图论算法
- 批准号:
1535977 - 财政年份:2015
- 资助金额:
$ 35.99万 - 项目类别:
Standard Grant
AitF: FULL: Collaborative Research: PEARL: Perceptual Adaptive Representation Learning in the Wild
AitF:FULL:协作研究:PEARL:野外感知自适应表示学习
- 批准号:
1536003 - 财政年份:2015
- 资助金额:
$ 35.99万 - 项目类别:
Standard Grant
AitF: Full: Collaborative Research: Modeling and Understanding Complex Influence in Social Networks
AitF:完整:协作研究:建模和理解社交网络中的复杂影响
- 批准号:
1535912 - 财政年份:2015
- 资助金额:
$ 35.99万 - 项目类别:
Standard Grant
AitF: FULL: Collaborative Research: Optimizing Networked Systems with Limited Information
AitF:完整:协作研究:利用有限信息优化网络系统
- 批准号:
1535972 - 财政年份:2015
- 资助金额:
$ 35.99万 - 项目类别:
Standard Grant
AitF: Full: Collaborative Research: Graph-theoretic algorithms to improve phylogenomic analyses
AitF:完整:协作研究:改进系统发育分析的图论算法
- 批准号:
1535989 - 财政年份:2015
- 资助金额:
$ 35.99万 - 项目类别:
Standard Grant
AitF: FULL: Collaborative Research: PEARL: Perceptual Adaptive Representation Learning in the Wild
AitF:FULL:协作研究:PEARL:野外感知自适应表示学习
- 批准号:
1535797 - 财政年份:2015
- 资助金额:
$ 35.99万 - 项目类别:
Standard Grant
AitF: FULL: Collaborative Research: Compact Data Structures for Traffic Measurement in Software-Defined Networks
AitF:完整:协作研究:软件定义网络中流量测量的紧凑数据结构
- 批准号:
1535878 - 财政年份:2015
- 资助金额:
$ 35.99万 - 项目类别:
Standard Grant
AitF: FULL: Collaborative Research: Modeling and Understanding Complex Influence in Social Networks
AitF:完整:协作研究:建模和理解社交网络中的复杂影响
- 批准号:
1535900 - 财政年份:2015
- 资助金额:
$ 35.99万 - 项目类别:
Standard Grant














{{item.name}}会员




