EAGER: Plasmonic Transparent Electrodes for Organic Photovoltaics
EAGER:用于有机光伏的等离子透明电极
基本信息
- 批准号:1545897
- 负责人:
- 金额:$ 8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract:Nontechnical:Photovoltaic devices have the potential to provide an unlimited source of energy by converting solar light into electricity. Photovoltaic devices made with organic materials offer significant advantages compared to ones made with inorganic materials. These advantages include low-cost, light-weight, flexibility, and compatibility with reel-to-reel high-volume processing. However, widespread adoption of organic photovoltaic devices is limited by their relatively low power conversion efficiency, and the poor mechanical properties of the currently used indium-tin-oxide transparent electrode, especially for flexible devices. The brittleness of indium-tin-oxide thin films may render them incompatible with low cost, reel-to-reel, high volume processing and manufacturing of flexible organic solar cells. This EAGER project will investigate novel plasmonic nanostructured transparent electrodes as replacement for the currently used indium-tin-oxide transparent electrodes in organic solar cells. The new plasmonic transparent electrodes will significantly enhance the photon absorption in the organic light-harvesting layer(s) and thus improve the power conversion efficiency of the organic-based solar cells. The concept of taking advantage of the dual nature of the proposed plasmonic nanostructures is novel and transformative as it will enable the replacement of indium-tin-oxide with a material not only more superior as a transparent electrode but with an additional crucial function, which will boost the device power conversion efficiency and lead to large-scale manufacturing of low cost photovoltaic devices. This project will contribute to building US competitiveness in the field of renewable energy sources. Technical:This project will investigate novel metallic nanostructures in which the decay length of surface plasmon resonances is of the same order of magnitude as the thickness of the organic light-harvesting layer(s). These novel transparent electrodes have been shown via simulations to yield the highest reported enhancement in total photon absorption of the organic active light-harvesting layer(s) in an organic photovoltaic device. Two different types (single- and double-sided) of plasmonic nanostructures will be investigated and, various geometries from each type will be studied and compared to prior simulation results. An integrated experimental set-up will be used to prevent any air/moisture exposure of the silver electrode and of the organic materials during device processing and characterization. Two different lithographic techniques imprint and stencil will be pursued in order to realize the plasmonic nanostructured electrodes in organic photovoltaic devices. This project will seek to measure experimentally the enhanced photon absorption and demonstrate that it can be translated into an increased short-circuit current density resulting in a significantly enhanced power conversion efficiency. Unravelling the physics and the mechanism(s) that result in such an enhancement, and identifying any bottlenecks that may interfere with them, will advance our knowledge and understanding of the interactions between plasmonic and organic nanostructures. This will enable the proposed plasmonic transparent electrodes to be implemented in other thin film optoelectronic devices, such as organic biosensors, thus opening the door for many other applications and enabling technologies.The PI at Lehigh University has the track record in recruiting minorities and will continue to provide opportunities for underrepresented groups in the summer programs. The PI also plans to pursue NSF-REU (Research Experience for Undergraduates) to foster undergraduate participation with an emphasis on minority student recruitment.
摘要:非技术性:光伏设备有潜力通过将太阳能转化为电能来提供无限的能源。与无机材料制成的光伏器件相比,有机材料制成的光伏器件具有显著的优势。这些优点包括低成本、重量轻、灵活性以及与卷轴到卷轴大容量处理的兼容性。然而,有机光伏器件的能量转换效率相对较低,以及目前使用的铟-锡-氧化物透明电极机械性能较差,限制了有机光伏器件的广泛应用,尤其是对于柔性器件。铟锡氧化物薄膜的脆性可能使其与柔性有机太阳能电池的低成本、卷轴到卷轴、大容量加工和制造不兼容。这一迫切的项目将研究新型等离子体纳米结构透明电极,作为有机太阳能电池中目前使用的铟-锡-氧化物透明电极的替代品。新型等离子体透明电极将显著增强有机集光层(S)的光子吸收,从而提高有机太阳能电池的功率转换效率。利用所提出的等离子体纳米结构的双重性质的概念是新颖和变革性的,因为它将使铟-锡-氧化物被一种不仅作为透明电极的更优越的材料取代,而且具有额外的关键功能,这将提高器件的功率转换效率,并导致大规模制造低成本的光伏器件。该项目将有助于增强美国在可再生能源领域的竞争力。技术:该项目将研究新型金属纳米结构,其中表面等离子体共振的衰减长度与有机捕光层的厚度具有相同的数量级(S)。模拟结果表明,这些新型透明电极在有机光伏器件中的有机主动捕光层(S)的总光子吸收方面产生了最高的报道增强。将研究两种不同类型的等离子体纳米结构(单面和双面),并研究每种类型的不同几何形状,并与先前的模拟结果进行比较。在器件加工和表征过程中,将使用一个综合的实验装置来防止银电极和有机材料的任何空气/湿气暴露。为了在有机光伏器件中实现等离子体纳米结构电极,将采用两种不同的光刻技术:压印和模版。该项目将寻求在实验上测量增强的光子吸收,并证明它可以转化为增加的短路电流密度,从而显着提高功率转换效率。揭开导致这种增强的物理和机制(S),并找出任何可能干扰它们的瓶颈,将促进我们对等离子体和有机纳米结构之间相互作用的认识和理解。这将使建议的等离子体透明电极能够应用于其他薄膜光电子器件,如有机生物传感器,从而为许多其他应用打开大门,并使技术成为可能。利哈伊大学的PI在招募少数族裔方面有着良好的记录,并将继续在暑期项目中为代表不足的群体提供机会。PI还计划推行NSF-REU(本科生研究经验),以促进本科生的参与,重点是少数族裔学生的招生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Miltiadis Hatalis其他文献
Interface diffusion characteristics of Al–2 at.%Nd/n + a-Si:H and Al–2 at.%Nd/n + poly-Si bilayers
- DOI:
10.1016/j.tsf.2011.08.070 - 发表时间:
2012-01-01 - 期刊:
- 影响因子:
- 作者:
Nackbong Choi;Soo-Young Yoon;Chang-Dong Kim;Miltiadis Hatalis - 通讯作者:
Miltiadis Hatalis
Miltiadis Hatalis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Miltiadis Hatalis', 18)}}的其他基金
Acquisition of Advanced Equipment for Rapid Thermal and High Density Plasma Processing for Integrated Circuits and Flat Panel Displays
采购集成电路和平板显示器快速热和高密度等离子体处理的先进设备
- 批准号:
9601835 - 财政年份:1996
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
相似国自然基金
Plasmonic纳米孔光电同步传感用于肿瘤细胞外泌体单颗粒多参数检测的研究
- 批准号:22304162
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于协同耦合策略构筑超灵敏plasmonic PEC纳米生物传感器的研究
- 批准号:22004002
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
细菌视紫红质/Ag-M plasmonic杂化纳米生物电极用于痕量TNT电化学检测
- 批准号:21605057
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于外在超手性Plasmonic纳米结构的生物分子构象传感技术研究
- 批准号:11604227
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
基于plasmonic杂化纳米结构的新型化学和生物传感研究
- 批准号:21475125
- 批准年份:2014
- 资助金额:87.0 万元
- 项目类别:面上项目
单个固态plasmonic纳米孔基单分子电分析化学研究
- 批准号:21175125
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Plasmonic Mg-based catalysts for low temperature sunlight-assisted CO2 activation (MgCatCO2Act)
用于低温阳光辅助 CO2 活化的等离子体镁基催化剂 (MgCatCO2Act)
- 批准号:
EP/Y037294/1 - 财政年份:2025
- 资助金额:
$ 8万 - 项目类别:
Research Grant
CAS: Photocatalysis on Hybrid Plasmonic Materials
CAS:混合等离子体材料的光催化
- 批准号:
2349887 - 财政年份:2024
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
Fabrication of chiral plasmonic nanogaps by hot electron-induced metal growth for enhanced enantioselective light-matter interactions
通过热电子诱导金属生长制造手性等离子体纳米间隙以增强对映选择性光-物质相互作用
- 批准号:
23K23191 - 财政年份:2024
- 资助金额:
$ 8万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Infra-Plas: Colloidal Quantum Dots for Short-Wave Infrared Plasmonic Lasers
Infra-Plas:用于短波红外等离子激光器的胶体量子点
- 批准号:
EP/Z000912/1 - 财政年份:2024
- 资助金额:
$ 8万 - 项目类别:
Fellowship
EAGER: Enhancing plasmonic mode coupling in metal insulator metal structures
EAGER:增强金属绝缘体金属结构中的等离子体模式耦合
- 批准号:
2334968 - 财政年份:2023
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
A ultra-sensitive infrared plasmonic-thermoelectric system
超灵敏红外等离子体热电系统
- 批准号:
23H01785 - 财政年份:2023
- 资助金额:
$ 8万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Creation of photonic reaction field based on collectrive behaviour of plasmonic particles using quntum coherence
利用量子相干性基于等离子体粒子的集体行为创建光子反应场
- 批准号:
23H01916 - 财政年份:2023
- 资助金额:
$ 8万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Rapid Plasmonic PCR Device and Platform for Single Step Disease Detection and Treatment To Enable Infectious Disease Symptom To Treatment In Minutes
用于单步疾病检测和治疗的快速等离子 PCR 设备和平台,可在几分钟内从传染病症状到治疗
- 批准号:
10076382 - 财政年份:2023
- 资助金额:
$ 8万 - 项目类别:
Grant for R&D
Quantum dot emission from plasmonic nanocavities
等离子体纳米腔的量子点发射
- 批准号:
2885938 - 财政年份:2023
- 资助金额:
$ 8万 - 项目类别:
Studentship
Maximizing the Harvesting of Photogenerated Electron-Hole Pairs in Hybrid Plasmonic Nanosystems
最大化混合等离子体纳米系统中光生电子空穴对的收获
- 批准号:
2304910 - 财政年份:2023
- 资助金额:
$ 8万 - 项目类别:
Standard Grant














{{item.name}}会员




