EAGER: Enhanced Optical Pressure from Nanostructured Metal Films
EAGER:纳米结构金属薄膜增强光学压力
基本信息
- 批准号:1549541
- 负责人:
- 金额:$ 11.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Enhanced Optical Pressure from Nanostructured Metal FilmsKevin Webb and Xianfan Xu, Purdue UniversityA combined theoretical and experimental study of optical forces in nanostructured material is proposed to establish a method to control the nanometer-scale force on a small particle and to provide enhancement in the total pressure on a structured surface. Consequently, large forces on small particles and an increase in the total force on a membrane are expected. While optical tweezers are now commercially available, they are effective for moving large beads to which, for example, biological molecules are attached. Positioning nanoparticles like quantum dots requires large and local forces that can be achieved with control over the geometry of a metal surface. This would circumvent the need for the large beads in optical tweezers and provide an approach for synthesizing new materials by nano-scale optical assembly. Furthermore, the substantial increase in the relatively weak pressure provided by light will allow weaker optical signals to be used in mechanical control. The resulting optomechanical system can be simpler and more versatile than optoelectronic systems, opening communication and sensing opportunities. Specifically, while it has been recognized that all-optical networks can increase both speed and efficiency, there remain challenges as to how to provide network reconfiguration that this approach could address. At the fundamental level, this work will provide experimental force data on the nanometer scale that will be used in establishing a model that can be used for device design. The goal of this project is to design and fabricate gold films with resonant nanometer-scale slots that are expected to produce a dramatic enhancement in the overall pressure. The verification of this method for increasing the force will allow the approach to be used to mechanically control a surface using laser light in various free space and waveguide arrangements. The project will lay the design foundations for nanophotonic structures that impart substantial and controllable optical forces to actuate tuning elements in photonic networks. This will simplify switching technology and the approach has the potential to reduce energy consumption and cost. This project will facilitate sensing, allowing a molecule to be moved to a region with large field and hence large Raman dipole moment for identification. Such nanoscale traps could be used in material synthesis, allowing trapping of quantum dots in nanocavities for achieving optical sources and detectors, for instance. While optical tweezers are becoming more common, determination of the absolute force relies on macroscopic calibration procedures that do not provide access to the force on the nanometer scale. By evaluating the relationship between materials and geometry and the force, it should be possible to design tweezers with larger forces to move smaller objects or larger objects locally. There should also be new opportunities through control of the optical material properties, both electric and magnetic. At the fundamental level, the proposed work may provide an answer to a century-long debate about the description of the optical force.
提出了纳米结构金属膜韦伯和徐凡XU的增强的光压,普渡大学(Purdue Universitya)合并了纳米结构材料中光学力的理论和实验研究,以建立一种控制小粒子上的纳米规模力的方法,并在结构表面的总压力中提供增强的粒子。因此,预计在小颗粒上的大力和膜上的总力增加。虽然现在可商购的光学镊子可有效地移动大珠,例如,生物分子附着在上面。将纳米颗粒(如量子点)定位需要大大和局部力,可以控制金属表面的几何形状。这将规定光学镊子中的大珠的需求,并提供了通过纳米级光学组件合成新材料的方法。此外,光所提供的相对较弱的压力大大增加将允许在机械控制中使用较弱的光学信号。与光电系统相比,所得的光力系统可以更简单,更通用,开放通信和感应机会。具体而言,尽管已经认识到全光网络可以提高速度和效率,但对于如何提供该方法可以解决的网络重新配置仍然存在挑战。在基本层面上,这项工作将在纳米尺度上提供实验力数据,该数据将用于建立可用于设备设计的模型。该项目的目的是设计和制造具有共振纳米尺度插槽的黄金膜,预计将在整体压力中产生巨大的增强。对增加力的方法的验证将允许使用该方法在各种自由空间和波导布置中使用激光光机械控制表面。该项目将为纳米光子结构奠定设计基础,这些纳米光子结构赋予了实质和可控的光学力,以在光子网络中启动调谐元件。这将简化切换技术,方法有可能降低能耗和成本。该项目将有助于感测,从而使分子移至具有较大田间的区域,因此可以将大的拉曼偶极矩进行识别。这种纳米级陷阱可用于材料合成,从而使纳米腔中的量子点捕获以实现光源和检测器。尽管光学镊子变得越来越普遍,但绝对力的确定依赖于宏观校准程序,这些程序无法在纳米尺度上提供对力的访问。通过评估材料与几何形状与力之间的关系,应该可以设计具有较大力的镊子,以将较小的物体或较大的物体移动本地。通过控制电气和磁性的光学材料特性,也应该有新的机会。在基本层面上,拟议的工作可能会为有关光学力量描述的一个世纪的辩论提供答案。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kevin Webb其他文献
Point-of-care 3D body-mapping for determining total body surface area of severely burned patients
用于确定严重烧伤患者总体表面积的护理点 3D 身体测绘
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Julia Loegering;Kevin Krause;Jesse Ahlquist;Kevin Webb;Karen Xu;N. Tran;D. Greenhalgh;T. Palmieri - 通讯作者:
T. Palmieri
Varicella-zoster infection in adults with cystic fibrosis: role of acyclovir.
成人囊性纤维化的水痘带状疱疹感染:阿昔洛韦的作用。
- DOI:
- 发表时间:
1991 - 期刊:
- 影响因子:0
- 作者:
Edmund L. C. Ong;Paula Mulvenna;Kevin Webb - 通讯作者:
Kevin Webb
Adaptive Control Design for Multi-UAV Cooperative Lift Systems
多无人机协同升力系统的自适应控制设计
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:2.2
- 作者:
Kevin Webb;Jonathan D. Rogers - 通讯作者:
Jonathan D. Rogers
Interactions of HCl and H<sub>2</sub>O with the surface of PuO<sub>2</sub>
- DOI:
10.1016/j.jnucmat.2019.02.036 - 发表时间:
2019-05-01 - 期刊:
- 影响因子:
- 作者:
Sophie Sutherland-Harper;Francis Livens;Carolyn Pearce;Jeff Hobbs;Robin Orr;Robin Taylor;Kevin Webb;Nikolas Kaltsoyannis - 通讯作者:
Nikolas Kaltsoyannis
Adult perspective of childhood disease: Cystic fibrosis
- DOI:
10.1016/s0957-5839(98)80076-6 - 发表时间:
1998-12-01 - 期刊:
- 影响因子:
- 作者:
Charles Haworth;Kevin Webb - 通讯作者:
Kevin Webb
Kevin Webb的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kevin Webb', 18)}}的其他基金
EAGER: Development of a Fluorescent Reporter for Protein-Membrane Interactions
EAGER:开发蛋白质-膜相互作用的荧光报告基因
- 批准号:
2330643 - 财政年份:2023
- 资助金额:
$ 11.68万 - 项目类别:
Standard Grant
Super-Resolution Optical Material Characterization
超分辨率光学材料表征
- 批准号:
2131486 - 财政年份:2022
- 资助金额:
$ 11.68万 - 项目类别:
Standard Grant
Developing Dynamic and Interactive Materials to Teach Computing Systems Concepts to All Students
开发动态和交互式材料来向所有学生教授计算系统概念
- 批准号:
2141722 - 财政年份:2022
- 资助金额:
$ 11.68万 - 项目类别:
Standard Grant
Super-Resolution In Vivo Optical Imaging as a Window to Parkinson's Disease Pathogenesis
超分辨率体内光学成像作为帕金森病发病机制的窗口
- 批准号:
1937986 - 财政年份:2020
- 资助金额:
$ 11.68万 - 项目类别:
Continuing Grant
CIF: Small: Super-Resolution Imaging in a Heavily Scattering Environment Enabled by Spatiotemporal Data
CIF:小:时空数据支持的高散射环境中的超分辨率成像
- 批准号:
1909660 - 财政年份:2019
- 资助金额:
$ 11.68万 - 项目类别:
Standard Grant
Multifunctional Optomechanics with Structured Material
具有结构材料的多功能光机械
- 批准号:
1927822 - 财政年份:2019
- 资助金额:
$ 11.68万 - 项目类别:
Standard Grant
Sensing and Imaging with Motion in Structured Optical Illumination
结构化光学照明中的运动传感和成像
- 批准号:
1610068 - 财政年份:2016
- 资助金额:
$ 11.68万 - 项目类别:
Standard Grant
CIF - Small: High Resolution Computational Imaging with Motion in Spatially Varying Fields
CIF - 小:空间变化场中运动的高分辨率计算成像
- 批准号:
1618908 - 财政年份:2016
- 资助金额:
$ 11.68万 - 项目类别:
Standard Grant
Collaborative Research: Infrastructure and Development of a Computer Science Concept Inventory for CS2
合作研究:CS2 计算机科学概念清单的基础设施和开发
- 批准号:
1504909 - 财政年份:2015
- 资助金额:
$ 11.68万 - 项目类别:
Standard Grant
US Partnering Award: "Nanoporous microsystems: A new view of epithelial physiology, on a chip"
美国合作奖:“纳米多孔微系统:芯片上上皮生理学的新观点”
- 批准号:
BB/M027848/1 - 财政年份:2015
- 资助金额:
$ 11.68万 - 项目类别:
Research Grant
相似国自然基金
基于微结构抛光头的小口径非球面光学模具磁场增强力流变确定性抛光
- 批准号:52375423
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
光学纳米天线与范德华异质结协同增强的高性能光谱仪的研究
- 批准号:62305260
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
复合低维拓扑材料中等离激元增强光学响应的研究
- 批准号:12374288
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
光-电-磁多物理场调控下功能化螺旋碳基纳米马达的光学手性增强
- 批准号:12374355
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于半导体表面等离激元增强的光学波导探针及其传感机理研究
- 批准号:12374287
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
Enhanced Quantum Dot Sources and Optical Atomic Memories for Telecommunication InterConnectivity
用于电信互连的增强型量子点源和光学原子存储器
- 批准号:
EP/Z000548/1 - 财政年份:2024
- 资助金额:
$ 11.68万 - 项目类别:
Research Grant
QuSeC-TAQS: Sensing-Intelligence on The Move: Quantum-Enhanced Optical Diagnosis of Crop Diseases
QuSeC-TAQS:移动中的传感智能:农作物病害的量子增强光学诊断
- 批准号:
2326746 - 财政年份:2023
- 资助金额:
$ 11.68万 - 项目类别:
Standard Grant
AI enhanced lifetime-based mesoscopic in vivo imaging of tissue molecular heterogeneity
人工智能增强了基于寿命的组织分子异质性细观体内成像
- 批准号:
10585510 - 财政年份:2023
- 资助金额:
$ 11.68万 - 项目类别:
Quantum-Enhanced 3D Optical Microscopy (Q3DOM)
量子增强 3D 光学显微镜 (Q3DOM)
- 批准号:
BB/X004317/1 - 财政年份:2023
- 资助金额:
$ 11.68万 - 项目类别:
Research Grant
Fluorescence lifetime-based tumor contrast enhancement using exogenous probes
使用外源探针进行基于荧光寿命的肿瘤对比度增强
- 批准号:
10775262 - 财政年份:2023
- 资助金额:
$ 11.68万 - 项目类别: