EAGER: Enhanced Optical Pressure from Nanostructured Metal Films
EAGER:纳米结构金属薄膜增强光学压力
基本信息
- 批准号:1549541
- 负责人:
- 金额:$ 11.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Enhanced Optical Pressure from Nanostructured Metal FilmsKevin Webb and Xianfan Xu, Purdue UniversityA combined theoretical and experimental study of optical forces in nanostructured material is proposed to establish a method to control the nanometer-scale force on a small particle and to provide enhancement in the total pressure on a structured surface. Consequently, large forces on small particles and an increase in the total force on a membrane are expected. While optical tweezers are now commercially available, they are effective for moving large beads to which, for example, biological molecules are attached. Positioning nanoparticles like quantum dots requires large and local forces that can be achieved with control over the geometry of a metal surface. This would circumvent the need for the large beads in optical tweezers and provide an approach for synthesizing new materials by nano-scale optical assembly. Furthermore, the substantial increase in the relatively weak pressure provided by light will allow weaker optical signals to be used in mechanical control. The resulting optomechanical system can be simpler and more versatile than optoelectronic systems, opening communication and sensing opportunities. Specifically, while it has been recognized that all-optical networks can increase both speed and efficiency, there remain challenges as to how to provide network reconfiguration that this approach could address. At the fundamental level, this work will provide experimental force data on the nanometer scale that will be used in establishing a model that can be used for device design. The goal of this project is to design and fabricate gold films with resonant nanometer-scale slots that are expected to produce a dramatic enhancement in the overall pressure. The verification of this method for increasing the force will allow the approach to be used to mechanically control a surface using laser light in various free space and waveguide arrangements. The project will lay the design foundations for nanophotonic structures that impart substantial and controllable optical forces to actuate tuning elements in photonic networks. This will simplify switching technology and the approach has the potential to reduce energy consumption and cost. This project will facilitate sensing, allowing a molecule to be moved to a region with large field and hence large Raman dipole moment for identification. Such nanoscale traps could be used in material synthesis, allowing trapping of quantum dots in nanocavities for achieving optical sources and detectors, for instance. While optical tweezers are becoming more common, determination of the absolute force relies on macroscopic calibration procedures that do not provide access to the force on the nanometer scale. By evaluating the relationship between materials and geometry and the force, it should be possible to design tweezers with larger forces to move smaller objects or larger objects locally. There should also be new opportunities through control of the optical material properties, both electric and magnetic. At the fundamental level, the proposed work may provide an answer to a century-long debate about the description of the optical force.
普渡大学的kevin Webb和Xianfan Xu提出了纳米结构材料中的光力的理论和实验相结合的研究,以建立一种控制小颗粒上纳米尺度力的方法,并提供增强结构表面上的总压力。因此,预计对小颗粒的大作用力和对膜的总作用力会增加。虽然光学镊子现在已经商业化,但它们对于移动附着生物分子的大珠子是有效的。定位像量子点这样的纳米粒子需要巨大的局部力,这种力可以通过控制金属表面的几何形状来实现。这将避免光学镊子中对大珠子的需求,并为通过纳米级光学组装合成新材料提供了一种方法。此外,光提供的相对微弱的压力的大幅增加将允许在机械控制中使用较弱的光信号。由此产生的光机械系统可以比光电系统更简单,更通用,开辟了通信和传感的机会。具体来说,虽然人们已经认识到全光网络可以提高速度和效率,但如何提供这种方法可以解决的网络重构仍然存在挑战。在基础层面上,这项工作将提供纳米尺度上的实验力数据,用于建立可用于设备设计的模型。这个项目的目标是设计和制造具有共振纳米级槽的金薄膜,期望能显著提高总压力。对这种增加力的方法的验证将允许该方法用于在各种自由空间和波导布置中使用激光机械控制表面。该项目将为纳米光子结构的设计奠定基础,纳米光子结构赋予大量可控的光力来驱动光子网络中的调谐元件。这将简化开关技术,并且该方法具有降低能耗和成本的潜力。该项目将有助于传感,允许分子移动到具有大场和大拉曼偶极矩的区域进行识别。这种纳米级陷阱可以用于材料合成,例如,可以在纳米腔中捕获量子点,以实现光源和探测器。虽然光学镊子变得越来越普遍,但绝对力的测定依赖于宏观校准程序,无法提供纳米尺度上的力。通过评估材料、几何形状和力之间的关系,应该可以设计出具有较大力的镊子来局部移动较小的物体或较大的物体。通过控制光学材料的性质,包括电和磁,也应该有新的机会。在基本层面上,提出的工作可能为长达一个世纪的关于光力描述的争论提供答案。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kevin Webb其他文献
Point-of-care 3D body-mapping for determining total body surface area of severely burned patients
用于确定严重烧伤患者总体表面积的护理点 3D 身体测绘
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Julia Loegering;Kevin Krause;Jesse Ahlquist;Kevin Webb;Karen Xu;N. Tran;D. Greenhalgh;T. Palmieri - 通讯作者:
T. Palmieri
Adaptive Control Design for Multi-UAV Cooperative Lift Systems
多无人机协同升力系统的自适应控制设计
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:2.2
- 作者:
Kevin Webb;Jonathan D. Rogers - 通讯作者:
Jonathan D. Rogers
Varicella-zoster infection in adults with cystic fibrosis: role of acyclovir.
成人囊性纤维化的水痘带状疱疹感染:阿昔洛韦的作用。
- DOI:
- 发表时间:
1991 - 期刊:
- 影响因子:0
- 作者:
Edmund L. C. Ong;Paula Mulvenna;Kevin Webb - 通讯作者:
Kevin Webb
The ST40 IVC1 divertor project: Procurement and installation in times of COVID-19
- DOI:
10.1016/j.fusengdes.2021.112378 - 发表时间:
2021-07-01 - 期刊:
- 影响因子:
- 作者:
Rob Bamber;Daniel Iglesias;Otto Asunta;Patrick Bunting;Steve Daughtry;Graham Dunbar;Simon Hanks;Adam Horozaniecki;Peter Moore;Damian Lockley;Kim Riddle;Marcin Stankiewicz;Tom Srawley;Neil Sykes;Rob Slade;Simon Stevens;Kevin Webb;Jon Wood; the Tokamak Energy team - 通讯作者:
the Tokamak Energy team
Interactions of HCl and H<sub>2</sub>O with the surface of PuO<sub>2</sub>
- DOI:
10.1016/j.jnucmat.2019.02.036 - 发表时间:
2019-05-01 - 期刊:
- 影响因子:
- 作者:
Sophie Sutherland-Harper;Francis Livens;Carolyn Pearce;Jeff Hobbs;Robin Orr;Robin Taylor;Kevin Webb;Nikolas Kaltsoyannis - 通讯作者:
Nikolas Kaltsoyannis
Kevin Webb的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kevin Webb', 18)}}的其他基金
EAGER: Development of a Fluorescent Reporter for Protein-Membrane Interactions
EAGER:开发蛋白质-膜相互作用的荧光报告基因
- 批准号:
2330643 - 财政年份:2023
- 资助金额:
$ 11.68万 - 项目类别:
Standard Grant
Super-Resolution Optical Material Characterization
超分辨率光学材料表征
- 批准号:
2131486 - 财政年份:2022
- 资助金额:
$ 11.68万 - 项目类别:
Standard Grant
Developing Dynamic and Interactive Materials to Teach Computing Systems Concepts to All Students
开发动态和交互式材料来向所有学生教授计算系统概念
- 批准号:
2141722 - 财政年份:2022
- 资助金额:
$ 11.68万 - 项目类别:
Standard Grant
Super-Resolution In Vivo Optical Imaging as a Window to Parkinson's Disease Pathogenesis
超分辨率体内光学成像作为帕金森病发病机制的窗口
- 批准号:
1937986 - 财政年份:2020
- 资助金额:
$ 11.68万 - 项目类别:
Continuing Grant
CIF: Small: Super-Resolution Imaging in a Heavily Scattering Environment Enabled by Spatiotemporal Data
CIF:小:时空数据支持的高散射环境中的超分辨率成像
- 批准号:
1909660 - 财政年份:2019
- 资助金额:
$ 11.68万 - 项目类别:
Standard Grant
Multifunctional Optomechanics with Structured Material
具有结构材料的多功能光机械
- 批准号:
1927822 - 财政年份:2019
- 资助金额:
$ 11.68万 - 项目类别:
Standard Grant
Sensing and Imaging with Motion in Structured Optical Illumination
结构化光学照明中的运动传感和成像
- 批准号:
1610068 - 财政年份:2016
- 资助金额:
$ 11.68万 - 项目类别:
Standard Grant
CIF - Small: High Resolution Computational Imaging with Motion in Spatially Varying Fields
CIF - 小:空间变化场中运动的高分辨率计算成像
- 批准号:
1618908 - 财政年份:2016
- 资助金额:
$ 11.68万 - 项目类别:
Standard Grant
Collaborative Research: Infrastructure and Development of a Computer Science Concept Inventory for CS2
合作研究:CS2 计算机科学概念清单的基础设施和开发
- 批准号:
1504909 - 财政年份:2015
- 资助金额:
$ 11.68万 - 项目类别:
Standard Grant
US Partnering Award: "Nanoporous microsystems: A new view of epithelial physiology, on a chip"
美国合作奖:“纳米多孔微系统:芯片上上皮生理学的新观点”
- 批准号:
BB/M027848/1 - 财政年份:2015
- 资助金额:
$ 11.68万 - 项目类别:
Research Grant
相似海外基金
Enhanced Quantum Dot Sources and Optical Atomic Memories for Telecommunication InterConnectivity
用于电信互连的增强型量子点源和光学原子存储器
- 批准号:
EP/Z000548/1 - 财政年份:2024
- 资助金额:
$ 11.68万 - 项目类别:
Research Grant
QuSeC-TAQS: Sensing-Intelligence on The Move: Quantum-Enhanced Optical Diagnosis of Crop Diseases
QuSeC-TAQS:移动中的传感智能:农作物病害的量子增强光学诊断
- 批准号:
2326746 - 财政年份:2023
- 资助金额:
$ 11.68万 - 项目类别:
Standard Grant
Quantum-Enhanced 3D Optical Microscopy (Q3DOM)
量子增强 3D 光学显微镜 (Q3DOM)
- 批准号:
BB/X004317/1 - 财政年份:2023
- 资助金额:
$ 11.68万 - 项目类别:
Research Grant
AI-enhanced ultra-thin optical shape mapping probes for manufacturing and medicine
用于制造和医学的人工智能增强型超薄光学形状测绘探头
- 批准号:
2879031 - 财政年份:2023
- 资助金额:
$ 11.68万 - 项目类别:
Studentship
MRI: Acquisition of a Scanning Near-Field Optical Microscope (neaSNOM) with Combined Nano-Infrared/Tip-Enhanced Raman Spectroscopy for Research & Education
MRI:购买扫描近场光学显微镜 (neaSNOM) 并结合纳米红外/尖端增强拉曼光谱进行研究
- 批准号:
2216239 - 财政年份:2022
- 资助金额:
$ 11.68万 - 项目类别:
Standard Grant
Enhanced radiative energy tunneling with dielectric optical resonators and its usage in harvesting thermal energy inside a solid
使用介电光学谐振器增强辐射能量隧道及其在固体内部收集热能中的用途
- 批准号:
2117953 - 财政年份:2022
- 资助金额:
$ 11.68万 - 项目类别:
Standard Grant
Collaborative Research: CIF: FET: Small: Realizing Joint Detection Receivers for Quantum-enhanced Optical Communications using Photonic NISQ-era Quantum Processors
合作研究:CIF:FET:小型:使用光子 NISQ 时代量子处理器实现量子增强光通信的联合检测接收器
- 批准号:
2204985 - 财政年份:2022
- 资助金额:
$ 11.68万 - 项目类别:
Standard Grant
Hybridised Quantum Optical Sensors for enhanced magnetoencephalography
用于增强脑磁图的混合量子光学传感器
- 批准号:
EP/W028050/1 - 财政年份:2022
- 资助金额:
$ 11.68万 - 项目类别:
Fellowship
Collaborative Research: CIF: FET: Small: Realizing Joint Detection Receivers for Quantum-enhanced Optical Communications using Photonic NISQ-era Quantum Processors
合作研究:CIF:FET:小型:使用光子 NISQ 时代量子处理器实现量子增强光通信的联合检测接收器
- 批准号:
2114115 - 财政年份:2021
- 资助金额:
$ 11.68万 - 项目类别:
Standard Grant
Collaborative Research: CIF: FET: Small: Realizing Joint Detection Receivers for Quantum-enhanced Optical Communications using Photonic NISQ-era Quantum Processors
合作研究:CIF:FET:小型:使用光子 NISQ 时代量子处理器实现量子增强光通信的联合检测接收器
- 批准号:
2114294 - 财政年份:2021
- 资助金额:
$ 11.68万 - 项目类别:
Standard Grant