STTR Phase I: An integrated platform for the analysis of patient health record data to enable predictive clinical decision support

STTR 第一阶段:用于分析患者健康记录数据以实现预测性临床决策支持的集成平台

基本信息

  • 批准号:
    1549867
  • 负责人:
  • 金额:
    $ 22.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-01-01 至 2017-05-31
  • 项目状态:
    已结题

项目摘要

The broader impact/commercial potential of this Small Business Technology Transfer (STTR) Phase I project is to reduce preventable patient readmissions, streamline triage, and detect multi-organ diseases early. Currently, failures of care delivery and care coordination, overtreatment, and administrative complexity cost the American healthcare system an estimated 300 billion dollars per year, and are among the largest contributors to mortalities within clinical settings. The recent transition of the healthcare industry to electronic health records offers new opportunities to reduce these costs and mortalities through use of clinical decision support systems. However, existing clinical decision support systems have had limited impact, due in part to their failure to detect trends in patient status and neglect of risk factor interdependence. Further, these systems must be updated manually on a regular basis to combat declining accuracy over time. Thus, there exists a pressing need to improve the technology underlying clinical decision support systems. The proposed technology directly addresses the current limitations of clinical decision support technology while placing no additional burden on clinicians, thus easing its adoption into clinics. In addition, the large value proposition and life-saving potential lend broad commercial appeal to the clinical decision support system being developed in this study.The proposed project advances the analysis of trends in patient health information and the identification of correlations among physiological data that are useful in predicting patient outcomes. The vast amounts of patient health information that are collected in electronic medical records present opportunities for improving the quality of health care, as well as practical challenges that are associated with interpreting such data. These challenges include the processing of measurements taken unreliably and at irregular intervals, the quantification of the interdependence of health risk factors, and the development of infrastructure for effectively interfacing medical records with suites of tools for clinical decision support. This project entails the implementation of sophisticated data imputation procedures for repairing imperfect time series measurements and building trend features for use in disease prediction and patient transfer recommendation tools. Trend information will be combined with correlations between sets of vital signs and lab tests, and then optimized using a statistical scheme for reliably predicting patient outcomes. The integration of this analytic technology with existing clinical information technology infrastructure will empower clinicians to more effectively use the data available to them, reduce the costs associated with overtreatment and extended stay, and improve patient health care outcomes.
这个小企业技术转让(STTR)第一阶段项目的更广泛的影响/商业潜力是减少可预防的患者再入院,简化分诊,并及早发现多器官疾病。目前,护理提供和护理协调失败、过度治疗和管理复杂性每年使美国医疗保健系统损失估计3000亿美元,并且是临床环境中死亡率的最大贡献者之一。医疗保健行业最近向电子健康记录的过渡提供了通过使用临床决策支持系统来降低这些成本和死亡率的新机会。然而,现有的临床决策支持系统的影响有限,部分原因是它们未能检测患者状态的趋势和忽视风险因素的相互依赖性。此外,这些系统必须定期手动更新,以防止随着时间的推移准确性下降。因此,迫切需要改进临床决策支持系统的基础技术。所提出的技术直接解决了当前临床决策支持技术的局限性,同时不会给临床医生带来额外的负担,从而简化了临床的采用。此外,大的价值主张和拯救生命的潜力借给广泛的商业吸引力,临床决策支持系统正在开发中的研究,拟议的项目推进分析的趋势,病人的健康信息和识别的相关性之间的生理数据,是有用的预测病人的结果。收集在电子医疗记录中的大量患者健康信息为改善医疗保健质量提供了机会,同时也带来了与解释此类数据相关的实际挑战。这些挑战包括处理不可靠和不规则间隔的测量结果,量化健康风险因素的相互依赖性,以及开发基础设施,有效地将医疗记录与临床决策支持工具套件连接起来。该项目需要实施复杂的数据估算程序,以修复不完善的时间序列测量,并建立用于疾病预测和患者转移建议工具的趋势特征。趋势信息将与生命体征集和实验室检查之间的相关性相结合,然后使用统计方案进行优化,以可靠地预测患者结局。这种分析技术与现有临床信息技术基础设施的集成将使临床医生能够更有效地使用他们可用的数据,降低与过度治疗和延长住院时间相关的成本,并改善患者的医疗保健结果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ritankar Das其他文献

A MACHINE LEARNING CLINICAL DECISION SUPPORT TOOL FOR MYOCARDIAL INFARCTION DIAGNOSIS
  • DOI:
    10.1016/s0735-1097(21)02012-x
  • 发表时间:
    2021-05-11
  • 期刊:
  • 影响因子:
  • 作者:
    Emily Pellegrini;Saarang Panchavati;Carson Lam;Anurag Garikipati;Nicole Zelin;Gina Barnes;Anna Siefkas;Jana Hoffman;Megan Handley;Jacob Calvert;Qingqing Mao;Ritankar Das
  • 通讯作者:
    Ritankar Das
Sa102 A MACHINE LEARNING ALGORITHM TO PREDICT GASTROINTESTINAL BLEEDING REQUIRING INTERVENTION
  • DOI:
    10.1016/s0016-5085(21)01715-7
  • 发表时间:
    2021-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Angier Allen;Yasha Ektefaie;Anurag Garikipati;Carson Lam;Abigail Green-Saxena;Anna Siefkas;Gina Barnes;Megan Handley;Samson Mataraso;Jana Hoffman;Qingqing Mao;Ritankar Das
  • 通讯作者:
    Ritankar Das
A comparative analysis of machine learning approaches to predict <em>C. difficile</em> infection in hospitalized patients
  • DOI:
    10.1016/j.ajic.2021.11.012
  • 发表时间:
    2022-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Saarang Panchavati;Nicole S. Zelin;Anurag Garikipati;Emily Pellegrini;Zohora Iqbal;Gina Barnes;Jana Hoffman;Jacob Calvert;Qingqing Mao;Ritankar Das
  • 通讯作者:
    Ritankar Das
A Machine-Learning Clinical Decision Support Tool for Myocardial Infarction Diagnosis
  • DOI:
    10.1016/j.carrev.2021.06.031
  • 发表时间:
    2021-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Saarang Panchavati;Carson Lam;Anurag Garikipati;Nicole Zelin;Emily Pellegrini;Gina Barnes;Anna Siefkas;Jana Hoffman;Jacob Calvert;Qingqing Mao;Ritankar Das
  • 通讯作者:
    Ritankar Das
A Gradient-Boosted Decision-Tree Algorithm for the Prediction of Short-Term Mortality in Acute Heart Failure Patients
  • DOI:
    10.1016/j.carrev.2021.06.045
  • 发表时间:
    2021-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ashwath Radhachandran;Anurag Garikipati;Nicole Zelin;Emily Pellegrini;Sina Ghandian;Jana Hoffman;Qingqing Mao;Ritankar Das
  • 通讯作者:
    Ritankar Das

Ritankar Das的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ritankar Das', 18)}}的其他基金

SBIR Phase I Machine Learning for Screening Acute Respiratory Distress Syndrome in General and COVID-19 Patient Populations
SBIR 第一阶段机器学习用于筛查普通急性呼吸窘迫综合征和 COVID-19 患者群体
  • 批准号:
    2014829
  • 财政年份:
    2020
  • 资助金额:
    $ 22.49万
  • 项目类别:
    Standard Grant

相似国自然基金

Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark Supercooled Phase Transition
  • 批准号:
    24ZR1429700
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
ATLAS实验探测器Phase 2升级
  • 批准号:
    11961141014
  • 批准年份:
    2019
  • 资助金额:
    3350 万元
  • 项目类别:
    国际(地区)合作与交流项目
地幔含水相Phase E的温度压力稳定区域与晶体结构研究
  • 批准号:
    41802035
  • 批准年份:
    2018
  • 资助金额:
    12.0 万元
  • 项目类别:
    青年科学基金项目
基于数字增强干涉的Phase-OTDR高灵敏度定量测量技术研究
  • 批准号:
    61675216
  • 批准年份:
    2016
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于Phase-type分布的多状态系统可靠性模型研究
  • 批准号:
    71501183
  • 批准年份:
    2015
  • 资助金额:
    17.4 万元
  • 项目类别:
    青年科学基金项目
纳米(I-Phase+α-Mg)准共晶的临界半固态形成条件及生长机制
  • 批准号:
    51201142
  • 批准年份:
    2012
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
连续Phase-Type分布数据拟合方法及其应用研究
  • 批准号:
    11101428
  • 批准年份:
    2011
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
D-Phase准晶体的电子行为各向异性的研究
  • 批准号:
    19374069
  • 批准年份:
    1993
  • 资助金额:
    6.4 万元
  • 项目类别:
    面上项目

相似海外基金

STTR Phase I: Silicon-Integrated Epitaxial Barium Titanate (BaTiO3) Chips for Photonics Applications
STTR 第一阶段:用于光子学应用的硅集成外延钛酸钡 (BaTiO3) 芯片
  • 批准号:
    2322389
  • 财政年份:
    2023
  • 资助金额:
    $ 22.49万
  • 项目类别:
    Standard Grant
STTR Phase I: Wafer-Integrated Soft Magnetic Composite Films for Inductors with High Power Density and Efficiency
STTR 第一阶段:用于高功率密度和效率电感器的晶圆集成软磁复合薄膜
  • 批准号:
    2304631
  • 财政年份:
    2023
  • 资助金额:
    $ 22.49万
  • 项目类别:
    Standard Grant
STTR Phase I: Integrated Chemical and Supercritical Carbon Dioxide (CO2) Energy Storage
STTR 第一阶段:综合化学和超临界二氧化碳 (CO2) 储能
  • 批准号:
    2214063
  • 财政年份:
    2023
  • 资助金额:
    $ 22.49万
  • 项目类别:
    Standard Grant
STTR Phase I: Integrated High Lift Propulsor
STTR 第一阶段:集成高升力推进器
  • 批准号:
    2210226
  • 财政年份:
    2022
  • 资助金额:
    $ 22.49万
  • 项目类别:
    Standard Grant
STTR Phase II: Integrated Gallium Nitride (GaN) Field Effect Transistor (FET)-Based High Density On Board Electric Vehichle (EV) Charger
STTR 第二阶段:基于集成氮化镓 (GaN) 场效应晶体管 (FET) 的高密度车载电动汽车 (EV) 充电器
  • 批准号:
    2052316
  • 财政年份:
    2022
  • 资助金额:
    $ 22.49万
  • 项目类别:
    Cooperative Agreement
STTR Phase I: A Multimodal Integrated System For Improved Cardiopulmonary Resuscitation
STTR 第一阶段:用于改善心肺复苏的多模式集成系统
  • 批准号:
    2151541
  • 财政年份:
    2022
  • 资助金额:
    $ 22.49万
  • 项目类别:
    Standard Grant
STTR Phase I: An Integrated Biomedical Platform and Custom Algorithm to Optimize Feeding Protocols for Preterm Infants
STTR 第一阶段:用于优化早产儿喂养方案的集成生物医学平台和定制算法
  • 批准号:
    2208383
  • 财政年份:
    2022
  • 资助金额:
    $ 22.49万
  • 项目类别:
    Standard Grant
STTR Phase I: Low-Cost Packaging Solution for Space-Grade and High-Reliability Integrated Circuits
STTR 第一阶段:航天级高可靠性集成电路的低成本封装解决方案
  • 批准号:
    2052442
  • 财政年份:
    2021
  • 资助金额:
    $ 22.49万
  • 项目类别:
    Standard Grant
STTR Phase II: Complementary metal oxide semiconductor (CMOS) integrated piezoelectric vapor sensors
STTR 第二阶段:互补金属氧化物半导体 (CMOS) 集成压电蒸汽传感器
  • 批准号:
    2126910
  • 财政年份:
    2021
  • 资助金额:
    $ 22.49万
  • 项目类别:
    Cooperative Agreement
STTR Phase I: Long Stroke Micromachined Arrayed Cell Electrostatic Actuators for Highly Integrated Micro-Positioning
STTR 第一阶段:用于高度集成微定位的长冲程微机械阵列单元静电执行器
  • 批准号:
    2014678
  • 财政年份:
    2020
  • 资助金额:
    $ 22.49万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了