EAGER: Ultra-High Frequency Phononic Devices
EAGER:超高频声子器件
基本信息
- 批准号:1549911
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Surface acoustic wave propagation through engineered "phononic" crystal lattices was shown by theoretical and experimental evaluations to result in exciting new properties with "pass" and "stop" frequency bands, fractional wavelength propagation, mode hopping and high frequency resonances. The theoretical and experimental research on the propagation of surface acoustic waves through these lattices can be controlled by the size and geometry of the unit cell of these engineered structures. Yet, most of the work has been limited to moderate frequencies at megahertz ranges. Fundamentally, these structures can reach ultra-high frequency ranges through scaling down and design. This EAGER project proposes to study the problem of increasing the frequency of operation to ultra-high frequencies of such surface acoustic wave structures by developing a novel nanostructured phononic lattice device and exploring its properties. Furthermore, a novel fully integrated surface acoustic wave-phononic lattice device is proposed that has the potential to provide unique acoustic wave logic functions. The potential benefits of this research can be transformational in the electronics industry as a new family of acoustic wave devices can be developed with unique properties in the ultra-high frequency, and digital switching domain, with a host of key applications, such as superlensing imaging at fractional wavelengths, ultra-high frequency acoustic resonance filters for secure communications, switching phononic logic elements, ultra-sensitive sensing and others. The fundamental understanding of these structures will advance substantially the field of acoustic wave propagation and generation and will allow incorporation of such research in most electronics text books that will benefit student development. In societal needs it is anticipated to have a tremendous impact through applications in ultra-high frequency secure communications, acoustic logic elements, superlensing acoustic imaging for airport security, ultra-high sensitivity sensors, that are critical to societal needs for home, hospitals, institutions, airports, schools and vehicle safety. The goal of the project is to explore and develop a novel family of ultra-high frequency acoustic nanodevices based on phononic lattices of self-assembeled nanostructured thin films with different unit cell size and geometry. Three key innovative approaches will be introduced and employed for this project (a) the development of the self-assembly of piezoelectric nanostructures for the phononic lattice with the study of its fundamental acoustic wave properties, (b) the development and study of the surface acoustic wave inputs and outputs for the nanostructured phononic lattice, and (c) the integration of the nano-phononic lattice with inputs and outputs for an active acoustic wave logic element. The project will design for fundamental frequencies f0 in the gigahertz range and and study upconversion through fractional wavelength and scaling-down to sub-terahertz ranges. The proposed novel approach to developing a new family of acoustic nanodevices will explore the properties of the nano-phononic lattices theoretically and experimentally, explore frequency upconversion, mode hopping to higher frequency optical branches, and higher order resonances through the phononic lattice for ultra-high frequency applications.The proposed research focuses on introducing and exploring new concepts in phononic device development for ultra high frequency performance and unique capabilities for active switching that has a potentially transformative impact on integrated acoustic devices and circuits.
通过工程“声子”晶格的表面声波传播的理论和实验评估表明,导致令人兴奋的新性能与“通”和“停止”频带,分数波长传播,模式跳跃和高频共振。声表面波在这些晶格中传播的理论和实验研究可以通过这些工程结构的晶胞的尺寸和几何形状来控制。然而,大多数工作仅限于兆赫范围内的中等频率。从根本上说,这些结构可以通过按比例缩小和设计达到超高频范围。这个EAGER项目提出通过开发新型纳米结构声子晶格器件并探索其特性来研究将这种表面声波结构的操作频率提高到超高频的问题。此外,还提出了一种新型的完全集成的表面声波-声子晶格器件,该器件有可能提供独特的声波逻辑功能。这项研究的潜在好处可以在电子工业中实现变革,因为可以开发一种新的声波器件家族,其在超高频和数字开关领域具有独特的特性,具有许多关键应用,例如分数波长的超透镜成像,用于安全通信的超高频声学谐振滤波器,开关声子逻辑元件,超灵敏传感器等。对这些结构的基本理解将大大推进声波传播和生成领域,并将允许将此类研究纳入大多数电子教科书中,这将有利于学生的发展。在社会需求方面,预计它将通过超高频安全通信,声学逻辑元件,机场安全的超透镜声学成像,超高灵敏度传感器等应用产生巨大影响,这些应用对家庭,医院,机构,机场,学校和车辆安全的社会需求至关重要。该项目的目标是探索和开发一种新型的超高频声学纳米器件,该器件基于具有不同晶胞尺寸和几何形状的自组装纳米结构薄膜的声子晶格。本项目将引入和采用三种关键的创新方法:(a)开发声子晶格的压电纳米结构的自组装及其基本声波特性的研究,(B)开发和研究纳米结构声子晶格的表面声波输入和输出,以及(c)纳米声子晶格与有源声波逻辑元件的输入和输出的集成。该项目将设计千兆赫范围内的基频f0,并研究通过分数波长和缩小到亚太赫兹范围的上转换。所提出的开发新的声学纳米器件家族的新方法将从理论和实验上探索纳米声子晶格的性质,探索频率上转换,跳模到更高频率的光学分支,和高阶共振通过声子晶格的超-高频应用。拟议的研究重点是介绍和探索超高频声子器件开发的新概念,这是一种高性能和独特的有源开关功能,对集成声学器件和电路具有潜在的变革性影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Agisilaos Iliadis其他文献
Agisilaos Iliadis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Agisilaos Iliadis', 18)}}的其他基金
Novel Nanostructured ZnO Gas Sensors on (100) Si Wafers
(100) Si 晶圆上的新型纳米结构 ZnO 气体传感器
- 批准号:
0823996 - 财政年份:2008
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Request for Support and Sponsorship for the International Semiconductor Device Research Symposium (ISDRS '07). International Semiconductor Device Research Symposium (ISDRS'07) to
请求对国际半导体器件研究研讨会 (ISDRS 07) 的支持和赞助。
- 批准号:
0737914 - 财政年份:2007
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Development of ZnO Thin Films and Nanostructures on CMOS Wafers for Gravimetric Biosensors and "Touch" Pressure Sensors
用于重量生物传感器和“触摸”压力传感器的 CMOS 晶圆上的 ZnO 薄膜和纳米结构的开发
- 批准号:
0601481 - 财政年份:2006
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Conference Support and Sponsorship for the 2003 International Seminconductor Device Research Symposium (ISDRS'03)
2003 年国际半导体器件研究研讨会 (ISDRS03) 的会议支持和赞助
- 批准号:
0341464 - 财政年份:2004
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Piezoelectric Phononic Lattice Surface Acoustic Wave Devices on Silicon and Sapphire for Ultra-High Frequency Filters and Biomedical Sensor Applications
用于超高频滤波器和生物医学传感器应用的硅和蓝宝石压电声子晶格表面声波器件
- 批准号:
0302494 - 财政年份:2003
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Conference Support and Sponsorship for The 2001 International Semconductor Device Research Symposium (ISDRS'01) to be held in Washington, DC, December 5-7,2001
会议支持和赞助 2001 年国际半导体器件研究研讨会 (ISDRS01) 将于 2001 年 12 月 5 日至 7 日在华盛顿特区举行
- 批准号:
0121964 - 财政年份:2001
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Request for Support and Sponsorship for the International Semiconductor Device Research Symposium (ISDRS '99),December 1-3, 1999, in Charlottesville, VA
请求对 1999 年 12 月 1-3 日在弗吉尼亚州夏洛茨维尔举行的国际半导体器件研究研讨会 (ISDRS 99) 的支持和赞助
- 批准号:
9908636 - 财政年份:1999
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
XYZ on a Chip: CMOS Compatible Self-Assembled ZnO Polymeric Nanostructures on Chip for Sensor Imaging and Light Emission Technology
片上 XYZ:用于传感器成像和发光技术的片上 CMOS 兼容自组装 ZnO 聚合物纳米结构
- 批准号:
9980794 - 财政年份:1999
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Development of Si Light Emitting Devices for Enabling Optical Interconnect Technology in Si Integrated Circuits
开发硅发光器件以实现硅集成电路中的光互连技术
- 批准号:
9802270 - 财政年份:1998
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Development of Light Emitting Devices in Wide Band Gap MetalOxide/Nitride Systems using Pulsed Laser Deposition and Focused Ion Beam Technology
使用脉冲激光沉积和聚焦离子束技术开发宽带隙金属氧化物/氮化物系统中的发光器件
- 批准号:
9813819 - 财政年份:1998
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似国自然基金
磷脂酶Ultra特异性催化油脂体系中微量磷脂分子的调控机制研究
- 批准号:31471690
- 批准年份:2014
- 资助金额:90.0 万元
- 项目类别:面上项目
适应纳米尺度CMOS集成电路DFM的ULTRA模型完善和偏差模拟技术研究
- 批准号:60976066
- 批准年份:2009
- 资助金额:41.0 万元
- 项目类别:面上项目
相似海外基金
Ultra-scalable clock and carrier sychronisation for optical and wireless networks using sequentially-locked optical frequency combs
使用顺序锁定光学频率梳实现光学和无线网络的超可扩展时钟和载波同步
- 批准号:
10089417 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Collaborative R&D
Study of mitochondrial activation mechanism by ultra-low frequency magnetic field and development of minimally invasive therapy
超低频磁场线粒体激活机制研究及微创治疗进展
- 批准号:
23K06412 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Effect of nonlinear interaction between waves on abrupt bursts of emission in ultra high harmonic ion cyclotron frequency range
波间非线性相互作用对超高谐波离子回旋加速器频率范围内突然发射的影响
- 批准号:
23K03363 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of imaging technique for magnetic field distribution near integrated circuit substrate in ultra-high frequency band
超高频段集成电路衬底附近磁场分布成像技术进展
- 批准号:
23H01425 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
New area electron accelerator with high electric field and high Q by ultra-high frequency photonic assist accelerator
超高频光子辅助加速器高电场高Q值新领域电子加速器
- 批准号:
23H00123 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
The Realization of Next-Generation Integrated Millimeter-Wave Systems Based On Ultra-Low-Noise Frequency Synthesis Techniques
基于超低噪声频率合成技术的下一代集成毫米波系统的实现
- 批准号:
22KJ0659 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Collaborative Research: GEM--Quantifying the Contribution of Off-Equatorial Ultra-Low Frequency (ULF) Waves on Radial Diffusion in the Radiation Belts
合作研究:GEM——量化离赤道超低频(ULF)波对辐射带径向扩散的贡献
- 批准号:
2247855 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: GEM--Quantifying the Contribution of Off-Equatorial Ultra-Low Frequency (ULF) Waves on Radial Diffusion in the Radiation Belts
合作研究:GEM——量化离赤道超低频(ULF)波对辐射带径向扩散的贡献
- 批准号:
2247856 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: GEM--Quantifying the Contribution of Off-Equatorial Ultra-Low Frequency (ULF) Waves on Radial Diffusion in the Radiation Belts
合作研究:GEM——量化离赤道超低频(ULF)波对辐射带径向扩散的贡献
- 批准号:
2247857 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
MRI: Development of Ultra-Broadband High-Power Frequency Comb Light Source for Advanced Spectroscopy and Imaging
MRI:开发用于先进光谱和成像的超宽带高功率频率梳光源
- 批准号:
2216021 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Standard Grant