Quantum Groups, Quantum Symmetries, and Non-Commutative Geometry
量子群、量子对称性和非交换几何
基本信息
- 批准号:1565226
- 负责人:
- 金额:$ 10.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2017-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Noncommutative geometry is a field of pure mathematics that traces its origins to problems in mathematical physics motivated by the discovery of quantum phenomena. The typical mathematical framework in which geometric entities (such as the 4-dimensional space-time that underlies the general theory of relativity) can be studied algebraically needs to be enlarged and generalized if it is to be reconciled with quantum phenomena. In the resulting setup, the symmetries of a physical system (in the sense of structure-preserving transformations) sometimes need to be discarded and replaced with new and more exotic notions of symmetry. The mathematical embodiment of these exotic symmetries are known as "quantum groups," and they are the main focus of this project. Much of what can be taken for granted in the context of "plain" geometry and actions of ordinary transformations on ordinary spaces becomes problematic in the noncommutative setting. This research project aims to shed light on a number of these problems, in a range of subfields within the larger realm of noncommutative geometry. This project investigates several aspects of noncommutative geometry that revolve around the notion of quantum symmetry. This involves studying quantum groups, their representation theory, and their actions on algebraic and geometric structures, as well as attendant problems in non-commutative algebraic geometry. One goal is to further understand the phenomenon of quantum rigidity, whereby certain structures admit no truly quantum symmetries. What this means is that whenever a sufficiently well-behaved Hopf algebra (which is the algebraic embodiment of a quantum group) coacts in a structure-preserving manner, the coaction factors through one by the function algebra on an ordinary group. Many special cases of this are known (integral affine algebraic varieties, certain smooth non-commutative projective algebraic varieties, compact connected smooth manifolds, certain classes of metric spaces, etc.), but the general phenomenon is poorly understood. Another goal is to attempt to transport tools and concepts specific to discrete or reductive algebraic groups (such as Borel subgroups, maximal tori, weight systems, compactifications, residual finiteness, linearity) over to quantum groups in order to further elucidate their structure and representation theory. Finally, symmetry considerations allow for the construction of new examples of smooth noncommutative projective schemes that in some sense behave generically within the moduli spaces that classify such schemes. The representation theory of the corresponding algebras would then shed light into the nature of these moduli spaces that are at the moment not well understood.
非对易几何是纯数学的一个领域,其起源可以追溯到由量子现象的发现所激发的数学物理问题。几何实体(如作为广义相对论基础的四维时空)可以用代数方法研究的典型数学框架需要扩大和推广,如果它要与量子现象相协调的话。在这样的设置中,物理系统的对称性(在结构保持变换的意义上)有时需要被丢弃,并被新的和更奇特的对称性概念所取代。这些奇异对称性的数学体现被称为“量子群”,它们是这个项目的主要焦点。许多在“普通”几何和普通空间上的普通变换的作用的上下文中可以被认为是理所当然的东西,在非对易的环境中就成了问题。该研究项目旨在阐明非对易几何更大领域内一系列子领域的许多此类问题。本计画研究非对易几何的几个方面,这些方面都是围绕量子对称性的概念。这涉及研究量子群,它们的表示理论,它们对代数和几何结构的作用,以及非交换代数几何中的伴随问题。一个目标是进一步理解量子刚性现象,即某些结构不承认真正的量子对称性。这意味着,只要一个行为足够好的霍普夫代数(量子群的代数体现)以结构保持的方式相互作用,相互作用就会被普通群上的函数代数分解为1。许多特殊的情况是已知的(积分仿射代数簇,某些光滑的非交换射影代数簇,紧致连通光滑流形,某些类的度量空间等),但人们对这一普遍现象知之甚少。另一个目标是试图将离散或约化代数群(如Borel子群、极大环面、权系统、紧化、剩余有限性、线性)的工具和概念转移到量子群上,以进一步阐明它们的结构和表示理论。最后,对称性的考虑,允许建设新的例子,光滑的非交换投影计划,在某种意义上表现一般的模空间内,这样的计划进行分类。相应代数的表示论将揭示这些模空间的本质,这些模空间目前还没有得到很好的理解。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Some algebras having relations like those for the 4-dimensional {S}klyanin algebras
一些代数具有类似于 4 维 {S}klyanin 代数的关系
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0.6
- 作者:Chirvasitu, Alexandru and
- 通讯作者:Chirvasitu, Alexandru and
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexandru Chirvasitu其他文献
Topological automorphism groups of compact quantum groups
- DOI:
10.1007/s00209-017-2032-7 - 发表时间:
2018-01-11 - 期刊:
- 影响因子:1.000
- 作者:
Alexandru Chirvasitu;Issan Patri - 通讯作者:
Issan Patri
On the Hopf (co)center of a Hopf algebra
- DOI:
10.1016/j.jalgebra.2016.07.002 - 发表时间:
2016-10-15 - 期刊:
- 影响因子:
- 作者:
Alexandru Chirvasitu;Paweł Kasprzak - 通讯作者:
Paweł Kasprzak
Grothendieck rings of universal quantum groups
- DOI:
10.1016/j.jalgebra.2011.09.020 - 发表时间:
2012-01-01 - 期刊:
- 影响因子:
- 作者:
Alexandru Chirvasitu - 通讯作者:
Alexandru Chirvasitu
(In)equality distance patterns and embeddability into Hilbert spaces
(中)等距离模式和希尔伯特空间的可嵌入性
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Alexandru Chirvasitu - 通讯作者:
Alexandru Chirvasitu
Remarks on quantum symmetric algebras
- DOI:
10.1016/j.jalgebra.2013.08.031 - 发表时间:
2014-01-01 - 期刊:
- 影响因子:
- 作者:
Alexandru Chirvasitu;Matthew Tucker-Simmons - 通讯作者:
Matthew Tucker-Simmons
Alexandru Chirvasitu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexandru Chirvasitu', 18)}}的其他基金
Non-Commutative Spaces, Their Symmetries, and Geometric Quantum Group Theory
非交换空间、它们的对称性和几何量子群论
- 批准号:
2001128 - 财政年份:2020
- 资助金额:
$ 10.2万 - 项目类别:
Standard Grant
Quantum Groups, Quantum Symmetries, and Non-Commutative Geometry
量子群、量子对称性和非交换几何
- 批准号:
1801011 - 财政年份:2017
- 资助金额:
$ 10.2万 - 项目类别:
Standard Grant
相似海外基金
Trust in forensic science evidence in the criminal justice system: The experience of marginalised groups
刑事司法系统中对法医科学证据的信任:边缘群体的经历
- 批准号:
ES/Y010639/1 - 财政年份:2024
- 资助金额:
$ 10.2万 - 项目类别:
Research Grant
Support for Institutes and Research Groups on Qualitative and Multi-Method Research: 2024-2026
对定性和多方法研究机构和研究小组的支持:2024-2026
- 批准号:
2343087 - 财政年份:2024
- 资助金额:
$ 10.2万 - 项目类别:
Standard Grant
Quantum Groups, W-algebras, and Brauer-Kauffmann Categories
量子群、W 代数和布劳尔-考夫曼范畴
- 批准号:
2401351 - 财政年份:2024
- 资助金额:
$ 10.2万 - 项目类别:
Standard Grant
HSI Implementation and Evaluation Project: Scaling and Extending Exploratory Reading Groups to Strengthen Computing Pathways
HSI 实施和评估项目:扩大和扩展探索性阅读小组以加强计算途径
- 批准号:
2414332 - 财政年份:2024
- 资助金额:
$ 10.2万 - 项目类别:
Continuing Grant
Torsors under Reductive Groups and Dualities for Hitchin Systems
希钦系统还原群和对偶下的托索
- 批准号:
2402553 - 财政年份:2024
- 资助金额:
$ 10.2万 - 项目类别:
Standard Grant
Conference: Zassenhaus Groups and Friends Conference 2024
会议:2024 年 Zassenhaus 团体和朋友会议
- 批准号:
2346615 - 财政年份:2024
- 资助金额:
$ 10.2万 - 项目类别:
Standard Grant
Brauer groups and Neron Severi groups of surfaces over finite fields
有限域上的表面布劳尔群和 Neron Severi 群
- 批准号:
23K25768 - 财政年份:2024
- 资助金额:
$ 10.2万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Weak notions of curvature-dimension conditions on step-two Carnot groups
二级卡诺群上曲率维数条件的弱概念
- 批准号:
24K16928 - 财政年份:2024
- 资助金额:
$ 10.2万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RII Track-4:NSF: Understanding Perovskite Solar Cell Passivation at The Level of Organic Functional Groups through Ultrafast Spectroscopy
RII Track-4:NSF:通过超快光谱了解有机官能团水平的钙钛矿太阳能电池钝化
- 批准号:
2326788 - 财政年份:2024
- 资助金额:
$ 10.2万 - 项目类别:
Standard Grant
Combinatorial Representation Theory of Quantum Groups and Coinvariant Algebras
量子群与协变代数的组合表示论
- 批准号:
2348843 - 财政年份:2024
- 资助金额:
$ 10.2万 - 项目类别:
Standard Grant