Analysis of Partial Differential Equations Using Dynamical Systems Techniques

使用动力系统技术分析偏微分方程

基本信息

  • 批准号:
    1600061
  • 负责人:
  • 金额:
    $ 0.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-06-15 至 2017-05-31
  • 项目状态:
    已结题

项目摘要

This award provides support for participants, especially graduate students, junior researchers, women, and mathematicians from groups under-represented in the sciences, to attend the conference "Analysis of Partial Differential Equations using Dynamical Systems Techniques" hosted by Boston University during June 1-3, 2016. Partial differential equations (PDE) arise as mathematical descriptions of many natural and societal phenomena, for example, processes that change in both space and time, such as fluid mechanics, particle interaction, or financial markets. On the other hand, dynamical systems theory originated in classical Newtonian mechanics and developed into a universal tool for studying time evolution of a very broad range of phenomena. Techniques from the theory of dynamical systems have been used to analyze certain classes of PDE. The purpose of this conference is to bring together researchers who have pioneered the use of such techniques in the context of PDE, in order to share ideas, promote collaboration, and advance our understanding of these PDE models and how dynamical systems techniques can be used to analyze them. In addition, the conference will further our ability to predict dynamics of the physical phenomena that these PDEs describe. Many of the conference participants will be junior researchers, such as PhD students, who will benefit greatly from interacting with more senior researchers and also from presenting their own work. In the last several decades techniques from the theory of finite-dimensional dynamical systems have proven to be extremely useful for analyzing certain classes of PDE that can be viewed as infinite-dimensional dynamical systems. These PDE are viewed as evolution equations whose phase space is an appropriate infinite-dimensional Banach or Hilbert space. Methods such as semigroup theory, invariant manifolds, stability analysis, and KAM theory have all been utilized to great effect for a variety of these PDE, including the Navier-Stokes equation, Korteweg-deVries equation, Boussinesq equation, nonlinear Schrödinger equation, and the Fermi-Pasta-Ulam model. The conference will focus on two main types of PDE where this dynamical systems approach has been particularly successful: Hamiltonian systems and models from fluid dynamics. This focus on the two classes of PDE mentioned above will allow for a more complete coverage of recent related developments. Broader impacts will result from the participation of early-career researchers and those from underrepresented groups, who will be able to network and interact with senior participants and to learn about emerging directions in their field. Furthermore, both Hamiltonian systems and fluids models arise from practical applications, and thus the advancement in our understanding of the behavior of solutions to those models will in turn forward our ability to predict the types of behaviors observed in the physical systems themselves. More information can be found at the conference website: http://math.bu.edu/people/mabeck/APDE-DS.html
该奖项为参与者,特别是研究生,初级研究人员,妇女和数学家的支持提供了支持,这些小组的科学中代表性不足,他们参加了“使用动态系统技术对部分微分方程进行分析”,由波士顿大学在2016年6月1-3日期间举办的动态系统技术”。时间,例如流体力学,粒子互动或金融市场。另一方面,动态系统理论起源于古典牛顿力学,并发展成为一种通用工具,用于研究各种现象的时间演变。动态系统理论的技术已用于分析某些类别的PDE类别。这次会议的目的是将在PDE背景下使用此类技术的使用率汇集在一起​​,以分享想法,促进协作并促进我们对这些PDE模型的理解以及如何使用动态系统技术来分析它们。此外,会议将进一步预测这些PDE所描述的物理现象动态的能力。许多会议参与者将是初级研究人员,例如博士生,他们将与更多的高级研究人员互动以及介绍自己的工作中受益匪浅。在过去的几十年中,有限维动力学系统理论的技术已被证明对分析某些类别的PDE非常有用,而PDE可以将其视为无限二维动力学系统。这些PDE被视为相位空间是适当的无限二维Banach或Hilbert空间的进化方程。诸如Semigroup理论,不变流形,稳定性分析和KAM理论之类的方法都被用于各种PDE的效果,包括Navier-Stokes方程,Korteweg-Devries方程,Boussinesq方程,非线性Schrödinger方程以及Fermi-Pasta-Pasta-Pasta-pasta-ulam模型。会议将重点介绍这种动态系统方法特别成功的两种主要类型:Hamiltonian系统和流体动力学模型。该关注上面提到的两类PDE的重点将允许对最近相关的发展进行更完整的报道。早期研究人员和代表性不足的群体的参与将产生更大的影响,他们将能够与高级参与者建立联系和互动,并了解其领域的新兴方向。此外,汉密尔顿系统和流体模型均来自实际应用,因此,我们对解决方案对这些模型的行为的理解的进步反过来,我们将能够预测物理系统本身观察到的行为类型。更多信息可以在会议网站上找到:http://math.bu.edu/people/mabeck/apde-ds.html

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Margaret Beck其他文献

Tewa Red and the Puebloan diaspora: The making of Ledbetter Red
  • DOI:
    10.1016/j.jasrep.2016.01.036
  • 发表时间:
    2016-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Margaret Beck;Sarah Trabert;David V. Hill;Matthew E. Hill
  • 通讯作者:
    Matthew E. Hill
Stability of patterns in reaction-diffusion equations
反应扩散方程模式的稳定性
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Margaret Beck
  • 通讯作者:
    Margaret Beck

Margaret Beck的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Margaret Beck', 18)}}的其他基金

Dynamics of Partial Differential Equations: Topological Implications for Stability and Analysis in Higher Spatial Dimensions
偏微分方程的动力学:更高空间维度稳定性和分析的拓扑含义
  • 批准号:
    2205434
  • 财政年份:
    2022
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Standard Grant
Stability and Spatial Dynamics
稳定性和空间动力学
  • 批准号:
    1907923
  • 财政年份:
    2019
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Standard Grant
Stability and metastability of coherent structures in dissipative PDE
耗散偏微分方程中相干结构的稳定性和亚稳定性
  • 批准号:
    1411460
  • 财政年份:
    2014
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Continuing Grant
Doctoral Dissertation Improvement Grant: Identity Beyond the Colonial Core: Spanish Colonialism and Ceramic Technology of the Dismal River Aspect Culture (1675-1725 CE)
博士论文改进补助金:殖民核心之外的身份:西班牙殖民主义和惨淡河流文化的陶瓷技术(1675-1725 CE)
  • 批准号:
    1316758
  • 财政年份:
    2013
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Standard Grant
Infinite-dimensional dynamical systems: nonlinear stability, large-time transient behaviors, and bifurcation
无限维动力系统:非线性稳定性、大时间瞬态行为和分岔
  • 批准号:
    1007450
  • 财政年份:
    2010
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Standard Grant
Interaction and Migration in the Sonoran Desert, A.D. 900-1300
索诺兰沙漠中的互动和迁徙,公元 900-1300 年
  • 批准号:
    0830269
  • 财政年份:
    2008
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Standard Grant
Interaction and Migration in the Sonoran Desert, A.D. 900-1300
索诺兰沙漠中的互动和迁徙,公元 900-1300 年
  • 批准号:
    0639365
  • 财政年份:
    2007
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    0602891
  • 财政年份:
    2006
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Fellowship

相似国自然基金

部分双曲微分同胚中的拓扑与度量性质的研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
发展型偏微分方程组中基于部分观测数据的系数辨识问题
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
部分双曲系统的拓扑与遍历论性质
  • 批准号:
    11871120
  • 批准年份:
    2018
  • 资助金额:
    53.0 万元
  • 项目类别:
    面上项目
部分双曲系统的持续传递性
  • 批准号:
    11701015
  • 批准年份:
    2017
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
部分信息下带马尔科夫链的正倒向随机系统最优控制理论及其应用
  • 批准号:
    61573217
  • 批准年份:
    2015
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目

相似海外基金

Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
  • 批准号:
    2402028
  • 财政年份:
    2024
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Standard Grant
A new numerical analysis for partial differential equations with noise
带有噪声的偏微分方程的新数值分析
  • 批准号:
    DP220100937
  • 财政年份:
    2023
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Discovery Projects
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
  • 批准号:
    2343135
  • 财政年份:
    2023
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Standard Grant
International Conference on Harmonic Analysis, Partial Differential Equations, and Geometric Measure Theory
调和分析、偏微分方程和几何测度理论国际会议
  • 批准号:
    2247067
  • 财政年份:
    2023
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Standard Grant
Toward a global analysis on solutions of nonlinear partial differential equations
非线性偏微分方程解的全局分析
  • 批准号:
    23K03165
  • 财政年份:
    2023
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了