Stability and metastability of coherent structures in dissipative PDE
耗散偏微分方程中相干结构的稳定性和亚稳定性
基本信息
- 批准号:1411460
- 负责人:
- 金额:$ 16.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is focused on the development of theoretical tools for predicting the behavior of solutions to mathematical models arising in a variety of applications, such as biology, chemistry, and fluid dynamics. One key property is called stability. Roughly speaking, a solution is stable if when it is perturbed it still returns back to the original behavior as time evolves. In the real world, one expects a system to experience frequent small perturbations, for example due to unpredictable external inputs or noise. If a particular state is unstable, such fluctuations will drive the system away from it, towards a stable state. Thus, it is only the stable solutions that one expects to be observable in the long run. Mathematical models can provide insight into which solutions of a given system are stable, and how that stability depends on system parameters. This can help scientists in other disciplines predict which parameter ranges may be of interest in order to observe certain behaviors, thus suggesting what to test in experimental settings. Moreover, the models can provide information as to which physical mechanism is of primary importance in determining stability. The main goal of the project is to develop general mathematical techniques that are applicable to a variety of specific models, rather than to any one particular application. There are two types of stability that the principal investigator has focused on: (1) Asymptotic stability, meaning that the solution attracts nearby data as time evolves towards infinity; (2) Metastability, meaning that the solution attracts nearby data for large, but finite, times. The notion of asymptotic stability is relatively standard, and the fact that it allows for analysis in the limit as time tends towards infinity greatly simplifies the associated techniques. Nevertheless important open questions remain, such the stability of time-periodic patterns known as defects and the potential use of the Maslov index in understanding stability in spatial dimensions greater than one, and they will be addressed in this project. Metastability is a more subtle phenomenon, with far fewer methods for its analysis, and so advances in this area are of fundamental importance. Whether asymptotic or metastable solutions are more important in determining the observed behavior of a given system is dependent on the associated timescales. For example, if the asymptotically stable states are approached only on exponentially long time scales, then one would not expect to wait long enough to observe them in practice. In that case, the metastable states, which then appear during the long, intermediate times, become more relevant. This occurs, for example, in the Navier-Stokes equations, an important model of fluid dynamics, and this project will develop methods for analyzing metastability in this context.
该项目专注于开发理论工具,用于预测在各种应用中出现的数学模型的解的行为,如生物、化学和流体动力学。其中一个关键属性称为稳定性。粗略地说,一个解决方案是稳定的,如果当它被扰动时,它仍然随着时间的推移回到原来的行为。在现实世界中,人们预计系统会经历频繁的小扰动,例如由于不可预测的外部输入或噪声。如果一个特定的状态是不稳定的,这样的波动将驱使系统远离它,走向稳定状态。因此,只有稳定的解决方案才能长期观察到。数学模型可以洞察给定系统的哪些解是稳定的,以及这种稳定性如何依赖于系统参数。这可以帮助其他学科的科学家预测哪些参数范围可能是感兴趣的,以便观察某些行为,从而建议在实验环境中测试什么。此外,这些模型还可以提供关于哪种物理机制在决定稳定性方面起主要作用的信息。该项目的主要目标是开发适用于各种特定模型的通用数学技术,而不是任何一个特定的应用。主要研究人员关注两种类型的稳定性:(1)渐近稳定性,即随着时间的推移,解吸引附近的数据;(2)亚稳定,意味着解吸引附近的数据的时间较长,但时间有限。渐近稳定性的概念是相对标准的,它允许在时间趋于无穷大时在极限内进行分析,这一事实极大地简化了相关技术。然而,重要的未决问题仍然存在,例如被称为缺陷的时间周期模式的稳定性,以及Maslov指数在理解大于1的空间维度的稳定性方面的潜在用途,这些问题将在本项目中得到解决。亚稳性是一种更微妙的现象,分析它的方法要少得多,因此这一领域的进展具有根本的重要性。在确定给定系统的观察行为时,渐近解或亚稳态解哪个更重要取决于相关的时间尺度。例如,如果渐近稳定的状态只能在指数级长的时间尺度上接近,那么人们就不会期待等待足够长的时间来观察它们。在这种情况下,亚稳态,然后出现在漫长的中间时间,变得更加相关。例如,这发生在流体动力学的重要模型--纳维斯托克斯方程中,本项目将在此背景下开发分析亚稳性的方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Margaret Beck其他文献
The Maslov Index, Degenerate Crossings and the Stability of Pulse Solutions to the Swift-Hohenberg equation
- DOI:
10.1007/s10884-025-10436-4 - 发表时间:
2025-06-03 - 期刊:
- 影响因子:1.300
- 作者:
Margaret Beck;Jonathan Jaquette;Hannah Pieper - 通讯作者:
Hannah Pieper
Tewa Red and the Puebloan diaspora: The making of Ledbetter Red
- DOI:
10.1016/j.jasrep.2016.01.036 - 发表时间:
2016-04-01 - 期刊:
- 影响因子:
- 作者:
Margaret Beck;Sarah Trabert;David V. Hill;Matthew E. Hill - 通讯作者:
Matthew E. Hill
Stability of patterns in reaction-diffusion equations
反应扩散方程模式的稳定性
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Margaret Beck - 通讯作者:
Margaret Beck
Margaret Beck的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Margaret Beck', 18)}}的其他基金
Dynamics of Partial Differential Equations: Topological Implications for Stability and Analysis in Higher Spatial Dimensions
偏微分方程的动力学:更高空间维度稳定性和分析的拓扑含义
- 批准号:
2205434 - 财政年份:2022
- 资助金额:
$ 16.2万 - 项目类别:
Standard Grant
Analysis of Partial Differential Equations Using Dynamical Systems Techniques
使用动力系统技术分析偏微分方程
- 批准号:
1600061 - 财政年份:2016
- 资助金额:
$ 16.2万 - 项目类别:
Standard Grant
Doctoral Dissertation Improvement Grant: Identity Beyond the Colonial Core: Spanish Colonialism and Ceramic Technology of the Dismal River Aspect Culture (1675-1725 CE)
博士论文改进补助金:殖民核心之外的身份:西班牙殖民主义和惨淡河流文化的陶瓷技术(1675-1725 CE)
- 批准号:
1316758 - 财政年份:2013
- 资助金额:
$ 16.2万 - 项目类别:
Standard Grant
Infinite-dimensional dynamical systems: nonlinear stability, large-time transient behaviors, and bifurcation
无限维动力系统:非线性稳定性、大时间瞬态行为和分岔
- 批准号:
1007450 - 财政年份:2010
- 资助金额:
$ 16.2万 - 项目类别:
Standard Grant
Interaction and Migration in the Sonoran Desert, A.D. 900-1300
索诺兰沙漠中的互动和迁徙,公元 900-1300 年
- 批准号:
0830269 - 财政年份:2008
- 资助金额:
$ 16.2万 - 项目类别:
Standard Grant
Interaction and Migration in the Sonoran Desert, A.D. 900-1300
索诺兰沙漠中的互动和迁徙,公元 900-1300 年
- 批准号:
0639365 - 财政年份:2007
- 资助金额:
$ 16.2万 - 项目类别:
Standard Grant
相似海外基金
Metastability engineering in additive manufacturing: Alloy design for robustness against building defects
增材制造中的亚稳态工程:针对建筑缺陷的鲁棒性合金设计
- 批准号:
23H01722 - 财政年份:2023
- 资助金额:
$ 16.2万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Stochastic population processes: metastability, asymptotics and phase transitions
随机总体过程:亚稳态、渐近和相变
- 批准号:
RGPIN-2018-04480 - 财政年份:2022
- 资助金额:
$ 16.2万 - 项目类别:
Discovery Grants Program - Individual
Large deviation principle and metastability for lattice gas
晶格气体大偏差原理及亚稳态
- 批准号:
22K13929 - 财政年份:2022
- 资助金额:
$ 16.2万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Stochastic population processes: metastability, asymptotics and phase transitions
随机总体过程:亚稳态、渐近和相变
- 批准号:
RGPIN-2018-04480 - 财政年份:2021
- 资助金额:
$ 16.2万 - 项目类别:
Discovery Grants Program - Individual
Study on synthesis of new substances by control of thermodynamic metastability
热力学亚稳态控制新物质合成研究
- 批准号:
21H01602 - 财政年份:2021
- 资助金额:
$ 16.2万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Structure and Evolution of Low Temperature Spin Systems: Entropic Repulsion and Metastability
低温自旋系统的结构和演化:熵斥力和亚稳态
- 批准号:
2054833 - 财政年份:2021
- 资助金额:
$ 16.2万 - 项目类别:
Standard Grant
Stochastic population processes: metastability, asymptotics and phase transitions
随机总体过程:亚稳态、渐近和相变
- 批准号:
RGPIN-2018-04480 - 财政年份:2020
- 资助金额:
$ 16.2万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Connecting Grain Boundary's Metastability Evolution to Mechanical Behavior of Nanocrystalline Alloys During Non-Equilibrium Processing
职业:将晶界的亚稳态演化与纳米晶合金在非平衡加工过程中的机械行为联系起来
- 批准号:
1944879 - 财政年份:2020
- 资助金额:
$ 16.2万 - 项目类别:
Continuing Grant
RUI: Metastability of Crystals in Double Crystalline PEO-b-PCL Films and Their Role in Transport Properties
RUI:双晶 PEO-b-PCL 薄膜中晶体的亚稳定性及其在传输性能中的作用
- 批准号:
2004454 - 财政年份:2020
- 资助金额:
$ 16.2万 - 项目类别:
Standard Grant
Theory of polymer crystallization, melting, and interlude of metastability
聚合物结晶、熔化和亚稳态插曲的理论
- 批准号:
2015935 - 财政年份:2020
- 资助金额:
$ 16.2万 - 项目类别:
Continuing Grant














{{item.name}}会员




